
ER
D

C
TR

-1
1-

10

Civil Works Basic Research; System-Wide Water Resources Program

PT123: A Multi-Dimensional Particle Tracking
Computer Program
Version 1.0

En
gi

ne
er

 R
es

ea
rc

h
an

d
D

ev
el

op
m

en
t

Ce
nt

er

Hwai-Ping Cheng, Matthew W. Farthing, Kevin D. Winters,
Stacy E. Howington, Jing-Ru C. Cheng, and Amanda Hines

September 2011

Approved for public release; distribution is unlimited.

Civil Works Basic Research;
System-Wide Water Resources Program

ERDC TR-11-10
September 2011

PT123: A Multi-Dimensional Particle Tracking
Computer Program
Version 1.0

Hwai-Ping Cheng, Matthew W. Farthing, Kevin D. Winters, and Stacy E. Howington
Coastal and Hydraulics Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Jing-Ru C. Cheng, and Amanda Hines
Information Technology Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Report 1 in a series
Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers
441 G Street NW
Washington, DC 20314-1000

ERDC TR-11-10 ii

Abstract: This report describes a particle tracking computer program
named PT123. The development of PT123 was supported in part by the
Civil Works Basic Research project entitled “Efficient Resolution of
Complex Transport Phenomena Using Eulerian-Lagrangian Techniques”
and in part by the System-Wide Water Resources Program (SWWRP).
Given velocities, PT123 can track massless particles in 1-, 2-, and 3-D
unstructured or converted structured meshes. The elements used to con-
struct PT123 meshes are line elements in 1-D, triangular and/or quadri-
lateral elements in 2-D, and tetrahedral, triangular prism, and/or hexa-
hedral elements in 3-D. One adaptive (embedded 4th- and 5th-order) and
three non-adaptive (1st-, 2nd-, and 4th-order) Runge-Kutta (RK) methods
are included in PT123 to solve the ordinary differential equations describ-
ing the motion of particles. The adaptive RK method allows the user to
control tracking accuracy with specified error tolerances. The non-
adaptive RK methods provide the user options to balance computational
efficiency and accuracy by using lower order schemes for smooth velocity
fields and higher order schemes for complex velocity fields. Both element-
by-element (EBE) and non-element-by-element (NEBE) tracking
approaches are incorporated into PT123. Both node- and element-based
velocity can be used for particle tracking. PT123 can execute forward and
backward tracking and output tracking history at a specified frequency. It
tracks particles along the closed boundary and stops tracking when a
particle encounters the open boundary through which particles enter or
exit the computational domain. The start and end times of tracking are
flexible as long as their corresponding velocities can be computed via
temporal interpolation using the given velocities. This report is the first
report of the series describing the development and application of PT123.
It details the governing equation and numerical approaching associated
with PT123 Version 1.0. Six test examples in multiple dimensions are used
for verification and demonstration. The structure and the input guide of
the computer program are given in the appendices.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC TR-11-10 iii

Table of Contents
List of Figures and Tables .. v

Preface ... vii

1 Introduction ... 1

1.1 Purposes of PT123 research study .. 1
1.2 Modeling approach .. 2
1.3 Computational strategy and features ... 3
1.4 Input and output .. 4

2 Governing Equations and Numerical Solutions .. 6

2.1 Governing equation ... 6
2.2 Time integration ... 6

2.2.1 Adaptive RK schemes .. 7
2.2.2 Error estimate ... 8
2.2.3 Adaption of time step size ... 8

2.3 Interpolation of velocity ... 9
2.4 Element-by-Element (EBE) tracking .. 10
2.5 Non-Element-by-Element (NEBE) tracking ... 14

2.5.1 When using RK1 for NEBE-based PT: ... 15
2.5.2 When using RK2 for NEBE-based PT: ... 15
2.5.3 When using RK4 for NEBE-based PT: ... 16
2.5.4 When using RK45 for NEBE-based PT: ... 17

2.6 Tracking along a closed boundary .. 18
2.6.1 Velocity projection onto a 2-D boundary edge .. 18
2.6.2 Velocity projection onto a 3-D boundary face ... 20

3 Test Examples ... 23

3.1 Example 1: 1-D steady non-uniform velocity field .. 23
3.2 Example 2: 2-D steady rotational velocity .. 27
3.3 Example 3: 2-D swirl velocity .. 32
3.4 Example 4: 3-D helical velocity ... 38
3.5 Example 5: Seabrook flow field .. 40
3.6 Example 6: Umatilla groundwater flow field ... 44

4 Summary ... 49

References .. 50

ERDC TR-11-10 iv

Appendix A: Program Structure of PT123 ... 52

Appendix B: Input Guide of PT123 ... 62

Appendix C: Ouput Files of PT123 ... 77

Report Documentation Page

ERDC TR-11-10 v

List of Figures and Tables
Figures

Figure 1. Element-by-Element particle tracking diagram. .. 10
Figure 2. Plot to demonstrate how PT time step size is reduced when the end location is
outside of the active element.. 12
Figure 3. Non-Element-by-Element particle tracking diagram. .. 14
Figure 4. Projection of velocity onto a 2-D boundary segment. ... 19
Figure 5. Projection of velocity onto a 3-D boundary face. ... 20
Figure 6. Element- and node-based velocity variation for Example 1. .. 23
Figure 7. Comparison of the tracking paths of particles 5 and 10 using element-based
velocity and various EBE tracking schemes. ... 26
Figure 8. Comparison of the tracking paths of particles 5 and 10 using element-based
velocity and various NEBE tracking schemes. ... 26
Figure 9. Comparison of the tracking paths of particles 5 and 10 using node-based
velocity and various EBE tracking schemes. ... 26
Figure 10. Comparison of the tracking paths of particles 5 and 10 using node-based
velocity and various NEBE tracking schemes. ... 27
Figure 11. The mesh and steady rotational velocity field of Example 2. .. 28
Figure 12. Four hundred particles at time = 0 sec in Example 2. ... 28
Figure 13. Mean absolute error versus computational work (top) and time step size
(bottom) for various RK schemes using EBE and NEBE tracking for Example 2. 30
Figure 14. Transient velocity fields at various times of Example 3. ... 33
Figure 15. Four hundred particles at time = 0 sec in Example 3. ... 33
Figure 16. Example 3 particle tracking results at time = 0, 2, 4, 6, and 8 sec using RK45............. 34
Figure 17. Example 3 particle tracking results at time = 8, 10, 12, 14, and 16 using RK45. 34
Figure 18. Example 3 particle tracking results at time = 0, 16, 32, 48, 64, and 80 using
RK45. .. 35
Figure 19. Functions V0(t) and Vz0(t) for Example 4. ... 38
Figure 20. Example 4 forward particle tracking paths from time = 115 to 600 sec (left)
and from time = 600 to 1,085 sec (right) in mesh 1.. 39
Figure 21. Example 4 backward particle tracking paths from time = 1,085 to 600 sec
(left) and from time = 600 to 115 sec (right) in mesh 2 .. 40
Figure 22. Bathymetry of the Seabrook Fish Larval Transport Study domain. 41
Figure 23. Six groups of particles populated at time = 4,000,000 sec for tracking in
Example 5, where each group contained 400 particles. ... 41
Figure 24. Example 5 PT results at various times. .. 42
Figure 25. Zoom-in of Example 5 PT results for the G2, G5, and G6 particles. 43
Figure 26. Umatilla groundwater model mesh and the water injection and groundwater
pumping associated with an RDX cleanup alternative. .. 44
Figure 27. 20-day backward PT from PW1 ... 45

ERDC TR-11-10 vi

Figure 28. 100-day forward PT from injection ... 46
Figure 29. Two groups of particles populated at time = 0 day for forward PT in Example 5,
where each group had 400 particles. .. 46
Figure 30. Example 6 PT results at various times in top view for particles of P_R10
and P_R25 .. 47
Figure 31. Example 6 PT results at various times in oblique view for particles of P_R10
and P_R25 .. 48
Figure A1. Flow chart of PT123. ... 52
Figure A2. Program structure of PT123. .. 54

Tables

Table 1. Cash-Karp coefficients for the embedded 4th- and 5th-order RK. ... 7
Table 2. Mean absolute errors for example 1. ... 25
Table 3. Example 2 efficiency comparison. ... 29
Table 4. Example 3 efficiency comparison. ... 36
Table 5. Example 3 computation profile comparison. .. 37

ERDC TR-11-10 vii

Preface

This report summarizes the initial efforts undertaken in developing an
accurate and efficient multi-dimensional particle tracking computer pro-
gram: PT123. PT123 was developed as part of the advancement of model-
ing capability for solving transport-related environmental problems. This
development effort was performed by the U.S. Army Engineer Research
and Development Center (ERDC), Vicksburg, MS. Funding was provided
under in part the Civil Works Basic Research, and in part the System-Wide
Water Resources Program (SWWRP). Appreciation is extended to all those
who assisted in the development and review of this report.

Principal investigators for this study were Dr. Hwai-Ping Cheng,
Dr. Matthew W. Farthing, Kevin D. Winters, and Dr. Stacy E. Howington
of the Hydrologic Systems Branch, Coastal and Hydraulics Laboratory
(CHL), and Dr. Jing-Ru C. Cheng and Amanda Hines of DoD Super-
computing Resource Center, Information Technology Laboratory, ERDC.
Dr. Cheng, Dr. Farthing, Winters, and Dr. Howington conducted their
portion of the study under the general supervision of Earl V. Edris, Chief,
Hydrologic Systems Branch, CHL; Bruce A. Ebersole, Chief, Flood and
Storm Protection Division, CHL; and Dr. William D. Martin, Director,
CHL.

Dr. Zeki Demirbilek (CHL) and Dr. Tahirih C. Lackey (CHL) reviewed this
report and provided valued comments.

COL Kevin J. Wilson was Commander and Executive Director of ERDC.
Dr. Jeffery P. Holland was Director.

ERDC TR-11-10 1

1 Introduction

The particle tracking (PT) technique has a wide range of application in
environmental sciences and engineering. This technique typically uses the
output from hydrodynamic and/or advection-diffusion models to predict
particle movements in a Lagrangian manner. Given the velocity field, PT
can provide a quick estimate of how a chemical migrates in complex sur-
face water and groundwater systems. It can be used to understand,
visualize, and analyze flow fields (Pokrajac and Lazic 2002). It can be used
to study sediment transport (MacDonald et al. 2006), oil spill (Liu et al.
2011), and natural or man-induced retardation mechanisms that may be
used for the remediation or prevention of environmental pollution. It can
be used to understand and predict fish behavior (Goodwin et al. 2006) for
ecosystem restoration and preservation. It can also be applied in the
Eulerian-Lagrangian (EL) approximation to solve transport equations
numerically, which is a crucial modeling practice to help deal with envi-
ronmental issues concerning water quality. The quality of particle tracking
dictates much of the accuracy of the whole EL approximation (Russell and
Celia 2002) as well as efficiency on serial and parallel platforms (Cheng
and Plassman 2004). Efficient numerical methods for transport are neces-
sary for large-scale modeling in achieving the Corps’ mission. Therefore,
having accurate and efficient PT can help the Corps’ engineers and scien-
tists to carry out reimbursable and research and development (R&D)
projects. These methods have been implemented in a computer model
called PT123.

1.1 Purposes of PT123 research study

The purposes of PT123 research are two-fold. One is to construct accurate
and efficient PT computer routines for solving multi-dimensional trans-
port problem using the Eulerian-Lagrangian localized adjoint methods
(ELLAM) numerical method (Russell and Celia 2002), as proposed in the
Civil Works Basic Research project entitled “Efficient Resolution of
Complex Transport Phenomena Using Eulerian-Lagrangian Techniques.”
The other is to develop a library-type computer program which can be
incorporated easily into or linked to ERDC’s existing flow or transport
models (e.g., adaptive hydraulics model (ADH), particle tracking model
(PTM)) to enhance computational accuracy and efficiency in various
applications.

ERDC TR-11-10 2

1.2 Modeling approach

The velocity field dictates the PT result. Inaccuracies in velocity values
introduce an error into PT. Spatial interpolation of velocities introduces
another error into PT because the exact velocity field differs from the
interpolated field even if the nodal velocities are exact (Pokrajac and Lazic
2002).

Analytical PT solutions are limited to the cases with simple geometry and
velocity fields. Semi-analytical PT is used in the Pollock’s method, where
linear interpolation of velocity enables the analytical calculation of path
lines and travel times over an element (Pollock 1988). The standard
numerical methods used are the 1st-order Euler, the 2nd-order Euler
predictor-corrector, or higher-order Runge-Kutta (RK) methods. For
convenience, RK1 and RK2 are used to represent the 1st- and 2nd-order
methods (Press et al. 1992). The previous studies showed that higher-
order RK methods, e.g., 4st-order RK or RK4, are superior to the lower-
order RK methods regarding accuracy, and adaptive spatial or temporal
steps improve significantly the efficiency of PT algorithms in velocity fields
containing wide spectrums of velocity magnitude and element size (Cash
1989; Press et al. 1992; Bensabat et al. 1998; Oliveira and Baptista 1998);
Cheng and Plassman 2004.

By assuming that the given velocity field is accurate and the velocity inter-
polation error is negligible, the PT123 implementation focuses primarily
on the techniques for solving the ordinary differential equations (ODEs)
that describe the motion of particles along their path lines. The PT123
computer program presented in this document is the result of the initial
effort of PT123 basic R&D, resulting in a stand-alone computer code. The
next planned research tasks for PT123 include

1. parallelization;
2. GUI development;
3. library format;
4. incorporation of mechanisms/processes that modify tracking

velocities;
5. conversion of finite difference or finite volume model data into PT123

format.

ERDC TR-11-10 3

Refined and tested computational algorithms of PT123 will be ported into
ERDC’s in-house models, e.g., ADH (ADH 2010) and PTM (MacDonald
et al. 2006). A summary of PT123 computational strategy and feature and
model input/output (I/O) follows next.

1.3 Computational strategy and features

PT123 employs the following techniques in its computation:

1. Perform PT on either an element-by-element (EBE) or a non-element-
by-element (NEBE) basis.

2. Use both absolute tolerance (ATOL) and relative tolerance (RTOL) to
control accuracy in time integration when adaptive RK is used.

3. Use interpolation to estimate the derivative term, i.e., velocity, during
the RK process. The interpolation is linear in time and consistent with
element shape function in space.

With the strategy implemented, the current version (1.0) of PT123 includes
the following computational features:

1. PT in multiple dimensions: 1-, 2-, or 3-D.
2. Flexible time and length units: any time and length units are valid if

consistent.
3. Different RK schemes:

a. One adaptive: embedded 4th- and 5th-order (RK45).
b. Three non-adaptive: 1st-order (RK1), 2nd-order (RK2), and

4th-order (RK4) schemes can be used at the user’s choice.
4. Forward or backward PT: the user specifies in the input data whether

forward or backward PT is to be performed.
5. Multiple particles: there is no constraint on the number of tracked par-

ticles; the user specifies the number and the locations of the tracked
particles in the input data.

6. Steady or transient velocity fields: the user specifies whether a steady
or transient velocity is to be applied for PT.

7. Node- or element-based velocity: when node-based velocity is used,
only one velocity is assigned to a global node at a time; when element-
based velocity is used, the velocity at a node may change with the
element involving that node due to heterogeneity or other reasons.

8. Velocity conversion factor: each node or each element is assigned a
velocity conversion factor to allow the conversion from the given flow
velocity to the tracking velocity, e.g., from the given Darcy velocity to

ERDC TR-11-10 4

the pore velocity for tracking. This feature offers the flexibility of using
various tracking velocities for particles of different kinds, e.g., sedi-
ments of different sizes, in the same flow field.

9. Courant number to control PT time step size: a user-specified Courant
number value can be used to compute the PT time step size using the
tracking velocities and the characteristic length associated with the
element that contains the particle being tracked.

10. Flexible start time and time duration for tracking: the time parameters
can be assigned any values in the range that the given velocity field
covers.

11. Various types of element shapes: PT123 can compute PT within
unstructured meshes composed of line elements in 1-D, triangular and
quadrilateral elements in 2-D, and tetrahedral, triangular prism, and
hexahedral elements in 3-D domains.

1.4 Input and output

PT123 does not require any specification of time and length units in the
input file. Any combination of time and length units can be utilized in PT
computation as long as consistency is maintained throughout the input
data. The output assumes the same time and length units implied in the
input data.

The input data that PT123 requires for PT computation includes

1. element indices and nodal coordinates (i.e., geometry of the
computational domain);

2. velocities (e.g., flow fields from hydrodynamic models);
3. velocity conversion factors;
4. open/closed boundary information;
5. specifics for PT computation (e.g., particle data, computation

parameters, etc.).

PT123 uses several input files to accommodate its input data. The details
of the PT123 input files are given in Appendix B.

PT123 outputs the trajectory of each tracked particle from the start time
through the time duration, i.e., time versus location for each particle, at a
desired frequency. For example, if a particle is tracked for a time duration
of 30,000 sec and the user wants to trace the locations of the tracked
particle every 100 sec, then the trajectory will include 301 points, where

ERDC TR-11-10 5

301 is equal to (30,000/100)+1. PT123 stores the PT output in ASCII and
BINARY format for inspection and post-processing, respectively.

The remainder of the report provides details of the information summa-
rized so far. The mathematical statements and numerical solutions are
stated in Chapter 2. Six test examples are given in Chapter 3 for both
verification and demonstration purposes. Final remarks on the develop-
ment of PT123 and an outline of tasks for future advancements are given
in Chapter 4. The program structure and subroutine description are pro-
vide in Appendix A. The input guide is given in Appendix B. The output
files are described in Appendix C.

ERDC TR-11-10 6

2 Governing Equations and Numerical
Solutions

2.1 Governing equation

In PT123, the following ODE in vector form is solved for defining the
particle path.

 (,)
d

t
dt


x

V x (1)

where:

 d = Courant number
 = location of a tracked particle [L]
 t = time [t]
 = tracking velocity [L/t].

Given the initial location of a particle, i.e., x(t0), one can compute the
particle path through time integration over the specified velocities, as
shown in Equation 2.

 () () (,)
t

t

t t t dt  
0

0x x V x (2)

where:

 t0 = start time for PT [t]
 't = a dummy variable used for time integration.

2.2 Time integration

PT123 includes an adaptive time integration algorithm, where the differ-
ence from embedded 4th- and 5th-order RK results is employed for error
estimation. The estimated error is compared to the prescribed error
tolerances to adjust the time step size for time integration in the PT com-
putation. PT123 also provides options of using 1st-, 2nd-, or 4th-order RK
for computation, where the user provides a specified time step size, i.e.,

x

V

ERDC TR-11-10 7

the DT_INIT0 parameter in the PT Specifics file, in Appendix B. The com-
puted particle trajectory is composed of many tracking segments, and each
segment is associated with a successful RK computation.

2.2.1 Adaptive RK schemes

With RK45, we first compute ki (i = 1 to 6) as defined as in Equation 3,
where ki is a vector of a size equal to the dimension of the PT spatial
domain, i.e., 1 for 1-D, 2 for 2-D, and 3 for 3-D. Table 1 lists the values of
coefficients ai, bij, ci, and ci* used in RK45 as shown below (Press et al.
1992).

Table 1. Cash-Karp coefficients for the embedded 4th- and 5th-order RK (from Press et al. 1992).

i ai bij ci ci*

1 0 0 0 0 0 0 37/387 2825/27648

2 1/5 1/5 0 0 0 0 0 0

3 3/10 3/40 9/40 0 0 0 250/621 18575/48384

4 3/5 3/10 -9/10 6/5 0 0 125/594 13525/55296

5 1 -11/54 5/2 -70/27 35/27 0 0 277/14336

6 7/8 1631/55296 175/512 575/13824 44275/110592 253/4096 512/1771 1/4

j = 1 2 3 4 5

Δ (,)
Δ (, Δ)
Δ (, Δ)
Δ (, Δ)
Δ (, Δ)
Δ (, Δ)

n

n

n

n

n

n

t t

t b t a t

t b b t a t

t b b b t a t

t b b b b t a t

t b b b b b t a t

 

   

    

     

      

       

1

2 21 1 2

3 31 1 32 2 3

4 41 1 42 2 43 3 4

5 51 1 52 2 53 3 54 4 5

6 61 1 62 2 63 3 64 4 65 5 6

n

n

n

n

n

n

k V x

k V x k

k V x k k

k V x k k k

k V x k k k k

k V x k k k k k

 (3)

where:

 Δt = step size for time integration
 xn = start location.

Therefore, the embedded 5th-order RK yields

 (Δ)c c c c c c t         6
1 1 1 2 2 3 3 4 4 5 5 6 6 0n nx x k k k k k k (4)

ERDC TR-11-10 8

While the embedded 4th-order results in

 * * * * * * * (Δ)c c c c c c t         5
1 1 1 2 2 3 3 4 4 5 5 6 6 0n nx x k k k k k k (5)

where:

 1nx = estimated end location using the embedded 5th-order RK
 *

1nx = estimated end location using the embedded 4th-order RK.

2.2.2 Error estimate

Using RK45, the integration error can be estimated using Equation 6.

 *Δ   1 1n nx x (6)

where:

 = estimated error of time integration.

2.2.3 Adaption of time step size

Equation 7 is used to compare the estimated error with prescribed error
tolerances for the adaption of time step size.

 *

, , , ,

Δ

max ,
j

j

j j j j

δ
ATOL RTOL  


   1 1n n n nx x x x

 (7)

where:

 δj = the ratio of the estimated error to the prescribed error
tolerance in the j-th spatial direction

 ATOL = prescribed absolute error tolerance [L]
 RTOL = prescribed relative error tolerance [dimensionless]
 , jnx 1 = j-th component of 1nx .

Here ATOL represents the allowed estimated error of time integration for
each tracking segment in an absolute sense. On the other hand, RTOL is
the allowed error portion when compared to the length of the tracking
segment being calculated. The combination of the two, as described in the

∆

ERDC TR-11-10 9

denominator on the right-hand side of Equation 7, defines the allowed
error tolerance for each tracking segment. The user chooses ATOL and
RTOL based on the requirement of accuracy for his/her application.

We now define a ratio as

 max jj

R
δ


1

 (8)

and use R in determining an appropriate time step size for PT compu-
tation. Two possibilities exist:

When R < 1:

When R is smaller than 1, the estimated error exceeds the allowed error
tolerance, i.e., Equation 7. In this case, the time step size is reduced using
the following equation:

 * .Δ Δt t SF R   0 25 (9)

where:

 *Δt = adapted PT time step size
 SF = safety factor used in adaption.

When R ≥ 1:

When R is greater than or equal to 1, the estimated error is smaller than or
equal to the allowed error tolerance. In this case, the time step size for the
current PT computation is small enough to meet the required accuracy,
and the time step size can be increased for the successive particle tracking
computation. This increased time step size is computed using the follow-
ing equation:

 * .Δ Δt t SF R   0 2 (10)

2.3 Interpolation of velocity

The given velocity field can vary in both time and space. While the ana-
lytical velocity is not available in complex real-world systems, interpola-

ERDC TR-11-10 10

tion becomes essential to estimate velocity at various times and locations
in the PT computation. PT123 conducts a linear temporal interpolation
and the following spatial interpolation schemes, depending on the shape of
the active element, for its velocity computation:

1. Linear for 1-D line, 2-D triangular, and 3-D tetrahedral elements
2. Bi-linear for 2-D quadrilateral elements
3. tri-linear for 3-D hexahedral elements
4. Combined linear/bi-linear for 3-D triangular prism elements.

2.4 Element-by-Element (EBE) tracking

PT123 can conduct PT on an EBE basis (Cheng et al. 1996), where each
tracking segment computed using the designated RK scheme is within an
element. Figure 1 presents this EBE tracking concept.

Figure 1. Element-by-Element (EBE) particle tracking diagram.

As shown in Figure 1, PT123 reads domain geometry, velocity, and neces-
sary information for particle tracking. It uses the information of domain
geometry to prepare node-element connectivity, where the elements con-
necting at each global node are identified and stored. To track a particle,
PT123 first locates the element where the particle has entered. This

ERDC TR-11-10 11

element is called the active element. Then it conducts PT computation
within this active element using the designated RK scheme (if the particle
is on an interface between elements, all elements owning this particle are
potential active elements and will be examined one by one until a suc-
cessful PT computation is performed).

PT123 uses the user-specified initial time step size for the first PT com-
putation within the active element. It can also compute a Courant number-
based time step size for the first PT computation in the active element by
using the CR parameter value specified in the PT Specific File (Appen-
dix B). This Courant number-based time step size depends on both the size
and velocities associated with the active element. Suppose L represents the
characteristic length of the active element which has N element nodes;
Vi(t1) and Vi(t2) represent the velocity associated with times t1 and t2,
respectively at the i-th element node, where t1 and t2 are two consecutive
time steps; and the L is the length of a 1-D element, the square root of the
area of a 2-D element, and the cube root of the volume of a 3-D element.
Then the Courant number-based time step size is computed using
Equation 11.

 Δ Courant
avg

L
t CR

V
  (11)

where:

 CR = name of the Courant number parameter
 avgV = average element velocity, which can be computed using

() ()

N N

i i
avg

t t
V

N
 






 1 2
1 1

2

i iV V
 (12)

PT123 prevents Δ Courantt from becoming too large by restricting Vavg to a

minimum value of 10-10.

Reduction of time step size at the element boundary

If the time step size used is too large such that the particle will go outside
the active element, the time step size will be reduced so that the particle
would reach the boundary of the active element. This reduction of time

ERDC TR-11-10 12

step size is enforced in the EBE tracking even if a non-adaptive RK scheme
is employed. Figure 2 demonstrates how this reduction of tracking time
step size is achieved in PT123.

Figure 2. Plot to demonstrate how PT time step

size is reduced when the end location
is outside of the active element.

In Figure 2, points S and E represent the start and the end locations of a
PT computation associated with the active element M, and point I is the
intercept of segment SE and the element boundary. If the PT time step size
from point S to point E is Δtold, then the new PT time step size to prevent
the particle from going outside the element is estimated using the
following equation:

 SI

SE

Δ Δnew old

l
t t

l
  (13)

where:

 Δ newt = new PT time step

 SIl = distance between points S and I

 SEl = distance between points S and E.

It is noted that this linear reduction of PT time step size (i.e., Equation 13)
will get the particle to point E if RK1 is used. When higher-order RK
schemes are used, it would require an iteration process to stop the particle
on the element boundary. To help stop the particle on the boundary of the
active element without spending too computation in the iteration process,

ERDC TR-11-10 13

PT123 employs a narrow buffer zone surrounding the element boundary.
When the end location of a PT computation is within the buffer zone, it is
considered on the element boundary and this end location is adjusted to
assure that the particle is right on the element boundary for the subse-
quent PT. This narrow buffer zone is small when compared to the size of
the active element. This buffer zone is defined using the parameter
DN_SAFE specified in the PT123 Super File (Appendix B) and the absolute
error tolerance, i.e., ATOL, mentioned in Equation 7. For example, if a
tracked particle is to exit the active element M via the boundary side 2–3
as shown in Figure 2, the interpolation factor associated with element
node 1, say DN1, at the exit location will be zero. During PT computation,
when DN1 at the end location is computed between (0 - DN_SAFE1) and
(0 + DN_SAFE1), PT123 considers this particle reaching the element
boundary. And then PT123 sets DN1 to zero and adjusts the interpolation
factors associated with nodes 2 and 3, i.e., DN2 and DN3, accordingly to
move the particle slightly onto the element boundary. The buffer zone
parameter DN_SAFE1 is defined as follows.

 _ _
ATOL

DN SAFE DN SAFE
L


 

101 (14)

where L is the characteristic length of the active element M, as mentioned
before in Equation 11.

Both the end location and the available tracking time are examined after
each successful PT segment is computed. If the end location is still within
the active element and the available tracking time is not zero, successive
PT computations are conducted until either the tracking time is completely
consumed or the particle reaches the boundary of the active element.

The cumulative tracking of a particle is considered complete when either
the available tracking time becomes zero or the particle exits from an open
boundary before tracking time is consumed completely. An open boundary
is a boundary through which particles are permitted to enter or leave the
domain of interest. When the particle reaches the boundary of the active
element that is not an open boundary and the available tracking time is
not zero, tracking will continue on. In this case, all active element candi-
dates are tested one by one until a successful tracking is conducted as
mentioned before. This thus forms the EBE-based tracking as highlighted
with the yellow shade in Figure 1.

ERDC TR-11-10 14

2.5 Non-Element-by-Element (NEBE) tracking

PT123 can also conduct PT on a NEBE basis, where each tracking segment
computed may be across elements. The NEBE-based tracking in PT123
uses the designated RK scheme to compute the estimated end location,
i.e., xn+1, and a ray search algorithm to locate the element that includes
xn+1. This process continues until PT calculations are completed over the
entire computational domain. The PT time step size will be reduced when-
ever the particle encounters the domain boundary. Figure 3 depicts the
computational flow chart using the NEBE-based PT.

Figure 3. Non-Element-by-Element (NEBE) particle tracking diagram.

As shown on the upper left of the green-shade area in Figure 3, the PT
time step size is to be reduced if the particle would go outside of the
domain of interest, where no velocity field is available. The computation of
the reduced time step is given as follows when various RK schemes are
used.

ERDC TR-11-10 15

2.5.1 When using RK1 for NEBE-based PT:

The estimated end location can be computed using

 Δ (,) (Δ)nt t O t     2
1 0 0n n nx x V x (15)

If the estimated end location, i.e., xn+1, is outside of the domain of interest,
and the line segment connecting xn and xn+1 intersects with the domain
boundary at xB, then the reduced PT time step size is computed as

 Δ Δ Bt t



 

1 0
1

n

n n

x x

x x
 (16)

where:

 Δt1 = new PT time step after reduction.

2.5.2 When using RK2 for NEBE-based PT:

The estimated end location can be computed using

Δ (,)

Δ (, Δ)

(Δ)

n

n

t t

t t t

t

 

   

  

k

1

2 1

3
1 2

1 1
2 2

0

n

n

n n

k V x

k V x

x x k

 (17)

There are two situations where the time step size reduction may be needed
during the RK2 computation. The first instance occurs when the computed
xn + (k1/2) is outside of the domain of interest, and the line segment con-
necting xn and xn + (k1/2) intersects with the domain boundary at xB1. In
this case, the PT time step size is reduced using

 Δ Δ Bt t


  1
1 0

1 2
nx x

k
 (18)

When xn + (k1/2) is within the domain, k2 can be estimated. In the second
case, if the estimated end location, i.e., xn+1, is outside of the domain of
interest, and the line segment connecting xn and xn+1 intersects with the
domain boundary at xB2, then the PT time step size is reduced using

ERDC TR-11-10 16

n

Δ Δ Bt t



 


2

1 0
1

n

n

x x

x x
 (19)

2.5.3 When using RK4 for NEBE-based PT:

The estimated end location can be computed using

Δ (,)

Δ (, Δ)

Δ (, Δ)

Δ (, Δ)

(Δ)

n

n

n

n

t t

t t t

t t t

t t t

t

 

   

   

   

     1

1

2 1

3 2

4 3

5
1 2 3 4

1 1
2 2
1 1
2 2

1 1 1 1 0
6 3 3 6

n

n

n

n

n n

k V x

k V x k

k V x k

k V x k

x x k k k k

 (20)

There are four possible situations for the reduction of PT time step size
during the RK4 computation. These four conditions are described next.

Situations 1-2: the computed xn + (ki/2) (i = 1, 2) is outside of the
domain of interest, and the line segment connecting xn and xn + (ki/2)
intersects with the domain boundary at xBi. In this case, the PT time step
size is reduced using

 Δ Δ Bi

i

t t


 1 0 2
nx x

k
 (21)

Situation 3: the computed xn + k3 is outside of the domain of interest,
and the line segment connecting xn and xn + k3 intersects with the domain
boundary at xB3. In this case, the PT time step size is reduced using

 Δ Δ Bt t


  3
1 0

3

nx x

k
 (22)

Situation 4: the estimated end location, i.e., xn+1, is outside of the
domain of interest, and the line segment connecting xn and xn+1 intersects
with the domain boundary at xB4. Here the PT time step size is reduced
using

ERDC TR-11-10 17

 Δ Δ Bt t



 


4

1 0
1

n

n n

x x

x x
 (23)

2.5.4 When using RK45 for NEBE-based PT:

The estimated end location can be computed using

Δ (,)
Δ (, Δ)
Δ (, Δ)
Δ (, Δ)
Δ (, Δ)
Δ (, Δ)

n

n

n

n

n

n

t t

t b t a t

t b b t a t

t b b b t a t

t b b b b t a t

t b b b b b t a t

 

   

    

     

      

       

1

2 21 1 2

3 31 1 32 2 3

4 41 1 42 2 43 3 4

5 51 1 52 2 53 3 54 4 5

6 61 1 62 2 63 3 64 4 65 5 6

n

n

n

n

n

n

k V x

k V x k

k V x k k

k V x k k k

k V x k k k k

k V x k k k k k

x
* * * * * *

(Δ)

(Δ)

c c c c c c t

c c c c c c t





       

       

6
1 1 2 2 3 3 4 4 5 5 6 6

5
1 1 2 2 3 3 4 4 5 5 6 6

0

0
n 1 n

*
n 1 n

x k k k k k k

x x k k k k k k

 (24)

There are seven possible situations for the reduction of PT time step size
during the RK45 computation. These seven situations are described as
follows.

Situations 1-5: the computed
i

kj j
j

b



1

nx k (k = j+1, i = 1, 2, 3, 4, 5) is

outside of the domain of interest, and the line segment connecting xn and
i

kj j
j

b



1

nx k intersects with the domain boundary at xBi. In this case, the

PT time step size is reduced using

 Δ Δ Bi

i

kj j
j

t t

b



 


1 0

1

nx x

k

 (25)

Situation 6: the computed xn+1 is outside of the domain of interest, and
the line segment connecting xn and xn+1 intersects with the domain boun-
dary at xB6. Here the PT time step size is reduced using

 Δ Δ Bt t



 


6

1 0
1

n

n n

x x

x x
 (26)

ERDC TR-11-10 18

Situation 7: the computed *
1nx is outside of the domain of interest, and

the line segment connecting xn and *
1nx intersects with the domain boun-

dary at xB7. In this case, the PT time step size is reduced using

*

Δ Δ Bt t



 


7

1 0
1

n

n n

x x

x x
 (27)

When the reduction of PT time step size happens, Δt0 is updated with Δt1

to compute xn+1 using the specified RK scheme. Also, the same examina-
tion of whether the PT time step size needs to be further reduced is con-
ducted. This process continues until the computed xn+1 is within the
domain.

2.6 Tracking along a closed boundary

An open boundary is a boundary through which a particle can enter or exit
the domain of interest. A boundary is a closed boundary if it is not an open
boundary. Conceptually, the flow velocity associated with a closed boun-
dary is parallel or tangential to the boundary, i.e., zero normal velocity at
the closed boundary. However, both mesh resolution and numerical error
can contribute to non-tangent flow velocity at the closed boundary. This is
common in the simulations of real-world problems. As a result, the com-
puted PT results can become misleading if the PT computation does not
proceed when the tracked particle reaches a closed boundary.

PT123 uses the projected velocity on the closed boundary to continue PT
computation until the tracked particle reaches an open boundary or when
the tracking time is completely consumed. The computation of projected
velocity on the closed boundary is described next.

2.6.1 Velocity projection onto a 2-D boundary edge

As shown in Figure 4, the computed velocity at node 1 is V1, which is non-
parallel to the closed boundary edge between nodes 1 and 2. The geometric
quantities associated with edge 1-2 for PT123 computations include:

ERDC TR-11-10 19

Figure 4. Projection of velocity onto a 2-D boundary segment.

1. The length of edge 1-2 (l12):

    Δ Δl x y 
2 2

12 (28)

 where:

 Δx = x2 – x1
 Δy = y2 – y1
 (x1, y1) = coordinates of node 1
 (x2, y2) = coordinates of node 2.

2. The unit vector parallel to edge 1-2, u, is

 Δ Δ
,

x y
l l

     12 12

u (29)

3. The projected magnitude of V1 onto edge 1-2 can be computed as

  V1p V1 u (30)

 where:

 V1p = projected velocity of V1 onto edge 1-2.

 Then the projected velocity of V1 onto edge 1-2, i.e., V1p, is computed
as

ERDC TR-11-10 20

   Δ Δ Δ Δ
,

x y x y
Vx Vy

l l l l

                  12 12 12 12

1 1V1p V1p u V1 u u (31)

 where:

 ,Vx Vy1 1 = x- and y-components of V1.

2.6.2 Velocity projection onto a 3-D boundary face

Figure 5 shows the geometric relationship of the velocity at node 1, i.e., V1,
and a 3-D triangular boundary face 1-2-3. The equation describing the
plan containing face 1-2-3 can be represented by ax + by + cz + d = 0,
where the normal vector of the plane is (a, b, c).

Figure 5. Projection of velocity onto a 3-D boundary face.

The normal vector of the plane, n, can be computed using Equation 32 as

    (, ,)Δ ,Δ ,Δ Δ ,Δ ,Δa b c x y z x y z    12 12 12 13 13 1312 13n L L (32)

where:

 a =
Δ Δ
Δ Δ

y z

y z
12 12

13 13

 b =
Δ Δ
Δ Δ

z x

z x
12 12

13 13

ERDC TR-11-10 21

 c =
Δ Δ
Δ Δ

x y

x y
12 12

13 13

 Δx12 = x2 – x1
 Δy12 = y2 – y1
 Δz12 = z2 – z1
 Δx13 = x3 – x1
 Δy13 = y3 – y1
 Δz13 = z3 – z1
 (x1, y1, z1) = coordinates of node 1
 (x2, y2, z2) = coordinates of node 2
 (x3, y3, z3) = coordinates of node 3.

The unit normal vector is calculated as

 , ,
a b c     

u
n n n

 (33)

where:

 = the unit normal velocity of the plan containing face 1-2-3
 = a b c 2 2 2 .

The projected velocity of V1 parallel to the unit normal velocity u is

   , ,
a a a a a a

Vx Vy Vz
                      

1 1 1n nV1 V1 u V1 u u
n n n n n n

 (34)

where:

 , ,Vx Vy Vz1 1 1 = x- , y-, and z-components of V1.

The projected velocity of V1 onto Face 1-2-3 is

  , , , ,

a b c a b c
Vx Vy Vz Vx Vy Vy

   

                    
1 1 1 1 1 1

n nV1p V1 V1 V1 V1 u

n n n n n n

 (35)

u
n

ERDC TR-11-10 22

It is important to note that each boundary element should have only one
closed boundary edge/face when the unstructured mesh is constructed.
Otherwise, the velocity at nodes associated with two closed boundary
edges/faces will not be projected properly.

ERDC TR-11-10 23

3 Test Examples

This chapter presents six PT examples using PT123. The first example was
designed to compare the use of node-based and element-based velocities
for a 1-D heterogeneous problem. Examples 2–4 were employed for veri-
fication and comparison among different tracking schemes. The last two
examples demonstrate the application of PT123 in real-world problems.
Because the first four examples were designed mainly to examine PT123’s
numerical techniques, any time and length units can be employed. For
convenience in discussion, we simply used meter (m) and second (sec) as
the length and time units, respectively, for these four examples.

3.1 Example 1: 1-D steady non-uniform velocity field

In this example, the 1-D domain was composed of 41 nodes and 40 linear
elements. Every element had the same length of 10 m. The domain
included four types of material: material type 1 for elements 1–5, 8–11,
15–17, 25–34; material type 2 for elements 6–7 and 35–40; material type
3 for elements 12–14 and 22–24; and material type 4 for elements 18–21.
The materials have distinct levels of permeability for water flow. By
employing a steady flow throughout the entire domain (from left to right),
different velocities appeared in distinguishable parts of the domain
(Figure 6) due to heterogeneity. To highlight the heterogeneity, each linear
element in Figure 6 was depicted with a rectangle filled with a color repre-
senting the material type. In Figure 6, both element-based and node-based
velocities are provided. The element-based velocity was computed based
on the material type associated with each element, where higher velocities
were in the elements associated with material types that are more
permeable.

Figure 6. Element- and node-based velocity variation for Example 1.

ERDC TR-11-10 24

On the other hand, the node-based velocity was determined from element
connectivity with proportional contribution. As a result, a node at the
interface of two material types has an average velocity.

To test PT123, 10 particles were populated at the center of elements 1, 3, 5,
7, 9, 11, 13, 15, 17, and 19, respectively. A PT computation over a time
period of 100 sec was conducted using both element-based and node-
based velocities, and both element-by-element (EBE) and non-element-
by-element (NEBE) tracking methods. Although most existing flow models
compute node-based velocity, the velocity field specification type does not
represent the velocity change on the interface of two material types accu-
rately. Instead, element-based velocity can represent the true velocity field
correctly. For this simple 1-D example, the analytical solution of particle
tracking can be obtained using the element-based velocity according to
Darcy’s law (Jury et al. 1991), where the time duration expended by a
particle to pass through an element, Δ Mt , is equal to

 Δ M
M

M

L
t

V
 (36)

where:

 ML = the length of line element M

 MV = the element-based velocity of element M.

Table 2 lists the mean absolute error (MAE) associated with each particle
when the PT123 results are compared with the analytical solution every
second during the computation. The MAE for a particle is defined as

() ()

N
computed analytical

i i
i

x t x t
MAE

N






1 (37)

where:

 N = number of comparisons (it is 100 here for the comparison is
made every second)

()computed
ix t = computed particle location at the time associated with the

i-th comparison (it is at time = i sec)

ERDC TR-11-10 25

()analytical
ix t = analytical particle location at the time associated with the

i-th comparison (it is at time = i sec).

Table 2. Mean absolute errors for Example 1.

MAE
Particle ID

1 2 3 4 5 6 7 8 9 10
EBE_1_e_0.1 < 1E-6

EBE_4_e_0.1 < 1E-6

EBE_1_e_1 < 1E-6

EBE_4_e_1 < 1E-6

NEBE_1_e_0.1 0.139 0.156 0.174 0.045 0.172 0.192 0 0.204 0.223 0.979

NEBE_4_e_0.1 0.023 0.026 0.029 0.043 0.028 0.032 0 0.601 0.670 0.652

NEBE_1_e_1 0.695 0.784 0.891 0.454 0.862 0.960 ~0 1.021 1.119 14.68

NEBE_4_e_1 0.463 0.522 0.585 0.435 0.575 0.640 ~0 0.680 0.746 4.896

EBE_1_n_0.1 16.75 21.91 27.15 13.19 6.956 7.818 0.5 9.707 10.19 9.609

EBE_4_n_0.1 16.73 21.89 27.14 13.21 6.948 7.811 0.5 9.756 10.20 9.597

EBE_1_n_1 16.93 22.10 27.29 13.04 7.024 7.886 0.5 9.390 10.18 9.757

EBE_2_n_1 16.69 21.85 27.10 13.19 6.946 7.808 0.5 9.576 10.11 9.510

EBE_4_n_1 16.73 21.89 27.14 13.21 6.948 7.810 0.5 9.752 10.20 9.587

NEBE_1_n_0.1 16.57 21.94 27.15 13.19 6.956 7.818 0.5 9.706 10.19 9.609

NEBE_4_n_0.1 16.73 21.89 27.14 13.21 6.948 7.811 0.5 9.756 10.20 9.597

NEBE_1_n_1 16.93 22.10 27.30 13.04 7.025 7.888 0.5 9.314 10.14 9.792

NEBE_2_n_1 16.70 21.85 27.10 13.20 6.946 7.808 0.5 9.596 10.09 9.482

NEBE_4_n_1 16.74 21.89 27.14 13.21 6.948 7.811 0.5 9.764 10.19 9.593

In Table 2, the PT123 simulations are listed with names indicating the four
test variables specified: “EBE” and “NEBE” identify the tracking method;
the first number indicates the RK scheme; “e” and “n” denote the use of
element-based and node-based velocity, respectively; and the second
number is the time step size for integration. For example, simulation
“EBE_1_e_0.1” used the element-by-element tracking method, the
1st-order RK scheme, an element-based velocity field, and a time step size
of 0.1.

ERDC TR-11-10 26

Figures 7–10 compare the PT123 results using various RK schemes with
the analytical solution associated with particles 5 and 10, where the
element-based velocity was implemented in Figures 7 and 8, and the node-
based velocity was applied in Figures 9 and 10. The legends of Figures 7–
10 refer to the simulations using the same naming system explained above.

Figure 7. Comparison of the tracking paths of particles 5 and 10 using element-based velocity

and various EBE tracking schemes.

Figure 8. Comparison of the tracking paths of particles 5 and 10 using element-based velocity

and various NEBE tracking schemes.

Figure 9. Comparison of the tracking paths of particles 5 and 10 using node-based velocity

and various EBE tracking schemes.

ERDC TR-11-10 27

Figure 10. Comparison of the tracking paths of particles 5 and 10 using node-based velocity

and various NEBE tracking schemes.

Figure 7 shows that all four computational results from EBE-based track-
ing can be considered to match the analytical solutions of particles 5 and
10 perfectly. This illustrates the advantage of using EBE-based tracking
when the element-based velocity is employed. Figure 8 and Table 2, on the
other hand, show that the larger the PT time step size is, the greater error
NEBE-based tracking produces. The error associated with NEBE-based
tracking grows with the discontinuity of velocity from one material type to
another (e.g., from material type 4 to material type 3). It thus suggests that
NEBE cannot provide accurate tracking results when element-based
velocity field is used for domains with heterogeneity.

Figures 9 and 10 show that both EBE- and NEBE-based tracking methods
produce similar results for particles 5 and 10. They also reveal the tracking
error resulting from implementing node-based velocity when compared
with the analytical solution. As shown in Table 2, when the node-based
velocity was used, i.e., the bottom 10 test cases, the tracking error remains
significant no matter which RK scheme or time step size were specified. It
is noted that the error associated node-based velocity can be reduced by
including small elements around the material interface, but cannot be
completely removed.

3.2 Example 2: 2-D steady rotational velocity

In this example, PT was computed in a 2-D square domain, ranging from
-2,000 m to 2,000 m in both the x- and the y-directions. The domain was
discretized using both quadrilateral and triangular elements (Figure 11).
The mesh was composed of 81 nodes and 96 elements. A steady velocity
vector was given at each node using Equations 38 and 39 (Figure 11).

ERDC TR-11-10 28

      , . , , ,Vx x yπ y x y     0 002 2000 2000 2000 2000 (38)

      , . , , ,Vy x yπ x x y     0 002 2000 2000 2000 2000 (39)

Figure 11. The mesh and steady rotational

velocity field of Example 2.

Four hundred particles (point ID’s 0 - 399) were placed uniformly on a
circle centered at (0,1000) with a radius of 700 m (Figure 12). In Fig-
ure 12, each particle is connected to its adjacent two particles with line
segments to form a 400-edge polygon. With the given steady velocity field,
each particle should move clockwise around the center, i.e., (0,0), and
return to its initial position at times that are multiples of 1,000 sec if
tracking is accurate (Pokrajac and Lazic 2002; Cheng et al. 1996).

Figure 12. Four hundred particles at time = 0 sec

in Example 2.

ERDC TR-11-10 29

The results of PT simulations using different RK schemes and time step
sizes were compared as shown in Table 3 and Figure 13.

Table 3. Example 2 efficiency comparison.

Method TSS1 nt,a nt,t ε1 (m) ε (m)

EBE_RK12 0.002 200,005,167 200,020,212 0.4045E-01 0.6715E-01

EBE_RK12 0.01 40,005,109 40,020,286 0.2022E+00 0.3355E+00

EBE_RK12 0.1 4,005,182 4,020,295 0.2023E+01 0.3356E+01

EBE_RK12 0.5 805,422 820,929 0.1013E+02 0.1681E+02

NEBE_RK12 0.002 200,000,00 200,000,000 0.4044E-01 0.6711E-01

NEBE_RK12 0.01 40,000,000 40,000,000 0.2022E+00 0.3356E+00

NEBE_RK12 0.1 4,000,000 4,000,000 0.2024E+01 0.3358E+01

NEBE_RK12 0.5 800,000 800,000 0.1016E+02 0.1686E+02

EBE_RK22 0.1 4,006,687 4,025,247 0.9681E-03 0.1934E-02

EBE_RK22 1 409,283 432,963 0.4250E-01 0.7050E-01

EBE_RK22 10 54,861 85,843 0.3906E+01 0.6478E+01

EBE_RK22 100 26,604 66,423 0.1026E+03 0.1958E+03

NEBE_RK22 0.1 4,000,000 4,000,000 0.9284E-03 0.1540E-02

NEBE_RK22 1 400,000 400,000 0.4285E-01 0.7111E-01

NEBE_RK22 10 40,000 40,000 0.4235E+01 0.7029E+01

NEBE_RK22 100 4,000 4,000 0.4218E+03 0.7317E+03

EBE_RK42 10 54,320 84,581 0.8066E-04 0.4005E-03

EBE_RK42 25 33,597 67,792 0.2345E-01 0.4160E-01

EBE_RK42 100 26,672 65,833 0.1101E+01 0.3948E+01

EBE_RK42 500 26,288 66,052 0.4904E+01 0.4815E+02

NEBE_RK42 10 40,000 40,000 0.3328E-03 0.5523E-03

NEBE_RK42 25 16,000 16,000 0.3214E-01 0.5334E-01

NEBE_RK42 100 4,000 4,000 0.8311E+01 0.1379E+02

NEBE_RK42 500 1,600 1,600 0.2845E+03 0.4721E+03

EBE_RK452 100 1,347,292 1,456,129 0.4188E-03 0.1062E-02

EBE_RK452 500 1,347,351 1,456,707 0.4191E-03 0.1062E-02

EBE_RK452 Cr3 = 1 1,347,359 1,456,676 0.4190E-03 0.1062E-02

NEBE_RK452 100 1,366,565 1,369,315 0.4088E-03 0.6786E-03

NEBE_RK452 500 1,366,568 1,369,354 0.4089E-03 0.6786E-03
1 TSS = time step size.
2 ATOL = 10-7, DN_SAFE = 10-7.
3 Cr = Courant number.

ERDC TR-11-10 30

Figure 13. Mean absolute error versus computational WORK (top)

and time step size (bottom) for various RK schemes using EBE
and NEBE tracking for Example 2.

Table 3 provides a comparison of the efficiency for various RK schemes
employed in both the EBE- and the NEBE-based PT. Here, nt,t is the total
number of tracking time steps attempted, nt,a is the total number of steps
accepted, and “Cr = CR” refers to choosing the initial time step for tracking
over an element using a local target Courant number of CR, as defined in
Equation 11. When an adaptive RK scheme is used and the estimated error
is greater than the prescribed error tolerance, the attempted PT is not a
successful segment. The attempted PT becomes a successful segment when

ERDC TR-11-10 31

time step size is reduced to a degree such that the prescribed accuracy is
satisfied. Another example of an unsuccessful tracking segment is when
the EBE-based PT is employed and a particle would go outside the active
element, time step size needs to be reduced so that the particle would
reach the boundary of the active element. This is why when EBE-based PT
or RK45 is used, nt,t can be greater than nt,a. Two types of error indica-
tion are also included in Table 3 for accuracy comparison, where errors
were measured using the analytical solution (Cheng et al. 1996) at times
tn = 1,000n sec, n = 1, ... 10. These two error indicators are defined as
follows.

,
,

() ()PT analytical
i n i n

i NPT
n

ε t t
NPT 



    x x1
1
1 10

1 1
10

 (40)

,

max () ()PT analytical
i n i ni NPT

ε t t 
 x x

1
 (41)

where:

 NPT = number of particles.

To compare the computational effort for each test case more closely, we
define a number WORK as follows.

 ,t t StageWORK n N  (42)

where NStage is equal to 1 for RK1, 2 for RK2, 4 for RK4, and 6 for RK45.

Figure 13 plots mean absolute error, i.e., ε1, versus WORK and time step
size for various RK schemes using EBE and NEBE.

It must be noted that the WORK associated with NEBE-based tracking, as
shown in Figure 13, does not include the computation spent for ray trac-
ing. From Table 3 and Figure 13, the following are observed:

1. For non-adaptive, NEBE-based PT, nt,a = nt,t and total tracking time
(i.e., 10,000 sec in Example 2) = TSS x nt,t, where TSS is time step size.

2. For EBE-based PT, nt,a < nt,t due to the reduction of TSS when the par-
ticle would go outside of the active element.

ERDC TR-11-10 32

3. Given specified TSS, non-adaptive, EBE-based PT yields smaller ε1, i.e.,
more accurate, when compared with the respective non-adaptive,
NEBE-based PT.

4. When the higher-order RK scheme is used, the larger TSS can be used
to obtain accurate results when non-adaptive PT is considered.

5. When the non-adaptive tracking is considered, the EBE-based PT
requires more RK computation (i.e., WORK) than the NEBE-based PT
due to the reduction of TSS when the particle would go outside of the
active element.

6. Given specified error tolerance, the tracking effort (i.e., WORK) is
insensitive to TSS when adaptive schemes are used.

3.3 Example 3: 2-D swirl velocity

This example also computed PT in a 2-D square domain, though ranging
from 0 to 1 m in both the x- and the y-directions. The domain was dis-
cretized using 800 triangular elements and 441 nodes. Transient nodal
velocities were computed at time = 0.0, 0.5, 1.0, …, 79.5, and 80 sec using
Equations 43 and 44. These equations describe a velocity field five times
faster than the velocity field employed for a linear advection problem
(Problem E) in (Farthing and Kees 2009), where the initial concentration
disk underwent significant deformation during the transient simulation.

          2, , cos sin sin , , ,
πt

Vx x y tπy πx x y
        

5 2 0 1 0 1
8

 (43)

          2, , cos sin sin , , ,
πt

Vy x y tπx πy x y
        

5 2 0 1 0 1
8

 (44)

As shown in Figure 14, the velocity vectors were counterclockwise from
time = 0 to 4 sec, clockwise from time = 4 to 12 sec, and counterclockwise
from time = 12 to 16 sec to complete a cycle. Velocities were zero at
time = 4 and 12 sec when the flow changed directions.

For testing PT, 400 particles were initialized forming a circle, where the
center was at (0.5,0.75) and the radius was 0.15 m (Figure 15). The hydro-
dynamic time step, i.e., 0.5 sec, was used as the initial time step size for
PT.

ERDC TR-11-10 33

Figure 14. Transient velocity fields at various times of Example 3.

Figure 15. Four huncred particles at time = 0 sec

in Example 3.

Figures 16 and 17 show the PT results from time = 0 to 8 sec and from
time = 8 to 16 sec, respectively. Using RK45, the initial circle re-appeared
at time = 8 and 16 sec as accurate PT will yield even though the swirl-type
velocity field changed the relative locations of the 400 particles drastically
during the tracking process.

ERDC TR-11-10 34

Figure 16. Example 3 particle tracking results at time = 0, 2, 4, 6, and 8 sec using RK45.

Figure 17. Example 3 particle tracking results at time = 8, 10, 12, 14, and 16 using RK45.

As seen in Figure 18, the shape and location of the initial circle was main-
tained at time = 16, 32, 48, 64, and 80 sec, which correspond to the end of
1, 2, 3, 4, and 5 cycles of PT, respectively, when RK45 was used.

ERDC TR-11-10 35

Figure 18. Example 3 particle tracking results at time = 0, 16, 32, 48, 64,

and 80 using RK45.

Table 4 compares the efficiency for various RK schemes employed in both
the EBE- and the NEBE-based PT, where errors were measured using the
analytical solution (Farthing and Kees 2009) at times tn = 8n, n = 1, ... 10.
Table 5 compares the computation profile that includes the four most
called subroutines associated with each PT technique employed for
Example 3. From Tables 4 and 5, the following observations are made:

1. For adaptive PT, reducing ATOL and/or DN_SAFE would increase
accuracy.

2. For adaptive PT, both nt,a and nt,t are sensitive to ATOL when
TTS = 0.1, but become less sensitive when Cr = 0.1 was employed to
determine TTS.

3. For both adaptive and non-adaptive PT, the computation involved in
ray tracing is significant (subroutines EL_INTERSECT123 and ES123
are called for ray tracing computation).

4. The ratio of ray-tracing computation to RK computation increases with
TSS when non-adaptive PT is considered.

ERDC TR-11-10 36

Table 4. Example 3 efficiency comparison.

Method TSS1 nt,a nt,t ε1 (m) ε (m)

EBE_RK22 0.001 35,305,792 43,383,263 0.7185E-04 0.4071E-03

EBE_RK22 0.002 21,615,186 33,870,002 0.3960E-03 0.1649E-02

EBE_RK22 0.004 45,019,632 119,458,841 0.2776E-02 0.1451E-01

NEBE_RK22 0.001 32,000,000 32,000,000 0.6274E-04 0.2851E-03

NEBE_RK22 0.002 16,000,000 16,000,000 0.5009E-03 0.2370E-02

NEBE_RK22 0.004 8,000,000 8,000,000 0.4037E-02 0.2102E-01

EBE_RK42 0.005 11,110,354 20,688,936 0.2758E-04 0.2468E-03

EBE_RK42 0.01 8,720,160 19,494,241 0.6537E-04 0.3515E-02

EBE_RK42 0.02 7,883,456 19,452,895 0.2441E-03 0.7039E-02

EBE_RK42 Cr3 = 0.1 13,554,443 22,603,180 0.2479E-04 0.2084E-03

EBE_RK42 Cr3 = 0.5 7,771,777 19,192,392 0.4727E-03 0.4152E-01

NEBE_RK42 0.005 6,400,000 6,400,000 0.3895E-04 0.4226E-03

NEBE_RK42 0.01 3,200,000 3,200,000 0.6058E-03 0.8630E-02

NEBE_RK42 0.02 1,600,000 1,600,000 0.9291E-02 0.6785E-01

EBE_RK452 0.1 8,790,432 22,187,890 0.3475E-04 0.3120E-03

EBE_RK454 0.1 33,772,766 61,688,212 0.2777E-04 0.2319E-03

EBE_RK452 0.5 8,794,292 22,201,438 0.3440E-04 0.3102E-03

EBE_RK452 Cr3 = 0.1 12,193,618 21,458,297 0.2590E-04 0.2221E-03

EBE_RK455 Cr3 = 0.1 8,127,007 20,353,079 0.2721E-03 0.2174E-02

EBE_RK456 Cr3 = 0.1 9,158,432 22,563,127 0.9014E-05 0.7645E-04

EBE_RK452 Cr3 = 0.5 8,780,233 21,750,165 0.3465E-04 0.2931E-03

NEBE_RK452 0.1 22,199,342 35,354,014 0.1364E-04 0.1189E-03

NEBE_RK452 0.5 22,207,119 35,441,682 0.1399E-04 0.1213E-03

1 TSS = time step size.
2 ATOL = 10-9, DN_SAFE = 10-6.
3 Cr = Courant number.
4 ATOL = 10-10, DN_SAFE = 10-6.
5 ATOL = 10-9, DN_SAFE = 10-5.
6 ATOL = 10-9, DN_SAFE = 10-7.

ERDC TR-11-10 37

Table 5. Example 3 computation profile comparison.

Method

TSS1

Subroutine

RK124_EBE_PT INTRP123 ELTRAK123 VEL123

EBE_RK42 0.005 100,552,293 92,654,981 68,492,092 59,174,421

EBE_RK42 0.01 90,221,706 81,458,098 58,395,681 51,233,224

EBE_RK42 0.02 88,027,668 78,641,648 55,353,201 49,121,878

EBE_RK42 Cr3 = 0.1 113,517,654 106,106,754 80,096,228 68,311,294

EBE_RK42 Cr3 = 0.5 86,749,218 77,527,408 54,676,776 48,364,434

Method

TSS

Subroutine

EL_INTERSECT123 INTRP123 ES123 RK4_NEBE_PT

NEBE_RK42 0.005 152,955,419 83,965,076 54,244,309 40,690,297

NEBE_RK42 0.01 111,153,383 51,916,207 28,408,154 27,842,713

NEBE_RK42 0.02 88,366,138 35,344,362 21,012,448 15,117,733

Method

TSS

Subroutine

RK45_EBE_PT INTRP123 VEL123 ELTRAK123

EBE_RK452 0.1 128,686,100 117,011,573 84,310,320 60,795,126

EBE_RK454 0.1 446,300,396 419,862,288 322,923,972 199,733,606

EBE_RK452 0.5 128,721,929 117,050,946 84,331,893 60,824,902

EBE_RK452 Cr3 = 0.1 133,667,921 126,062,226 90,751,327 73,550,391

EBE_RK455 Cr3 = 0.1 125,462,993 118,516,502 85,422,371 69,234,979

EBE_RK455 Cr3 = 0.1 138,531,737 130,515,713 93,886,279 76,145,869

EBE_RK452 Cr3 = 0.5 127,030,325 115,785,907 83,529,995 60,321,769

Method

TSS

Subroutine

EL_INTERSECT123 INTRP123 RK45_NEBE_PT ES123

NEBE_RK452 0.1 1,480,529,987 724,017,184 472,443,976 393,743,058

NEBE_RK452 0.5 1,521,311,716 736,107,963 473,339,533 402,591,621

1 TSS = time step size.
2 ATOL = 10-9, DN_SAFE = 10-6.
3 Cr = Courant number.
4 ATOL = 10-10, DN_SAFE = 10-6.
5 ATOL = 10-9, DN_SAFE = 10-5.
6 ATOL = 10-9, DN_SAFE = 10-7.

ERDC TR-11-10 38

3.4 Example 4: 3-D helical velocity

Example 4 accounted for 3-D PT, where the domain was a cube, ranging
from -100 m to 100 m in all three directions. The domain was discretized
twice using mixed types of element: mesh 1 used tetrahedral and triangu-
lar prism elements, while mesh 2 used hexahedral and triangular prism
elements. Mesh 1 was composed of 12,000 elements, and mesh 2 had
32,000 elements. Both meshes had 9,261 nodes: 21 equally spaced nodes
in each direction. All domain boundaries were specified as open boun-
daries; therefore, particles exited the domain when they hit the domain
boundary. The nodal velocity was computed according to Equations 45–47
at time = 0, 200, 400, 600, 800, 1,000, 1,200, 1,400, and 1,600 sec.

 

 

, , , when

 otherwise

Vx x y z t x y

y
V t

x y

  


 


02 2

0 0

 (45)

 

 

, , , when

 otherwise

Vx x y z t x y

x
V t

x y

  

 


02 2

0 0

 (46)

    , , , zVz x y z t V t 0 (47)

where:

V0(t), Vz0(t) = piecewise linear functions of time (Figure 19).

Figure 19. Functions V0(t) and Vz0(t) for Example 4.

ERDC TR-11-10 39

As shown in Figure 19, the values of V0(t) and Vz0(t) changed from positive
to negative at time = 600 sec, but their absolute values were symmetric
about time = 600 sec. Due to this velocity symmetry, particles return to
their initial positions if PT began at time = (600 – t) sec and ended at
time = (600 + t) sec, where t is between 0 and 600 sec.

Ten particles were populated in this example for tracking between
time = 115 and 1,085 sec, i.e., t = 485 sec. The 10 particles were located on
the plane of z = -90 m with x- and y-coordinates of (10,-10), (20,-20),
(30,-30), (40,-40), (50,-50), (60,-60), (70,-70), (80,-80), (90,-90), and
(100,-100). Figure 20 presents the forward PT results on mesh 1, while
Figure 21 presents the backward PT results on mesh 2. Both figures
demonstrate accurate PT computation using RK45. This example also
verifies PT123’s capability of directional tracking, and that forward and
backward tracking produces equivalent results.

Figure 20. Example 4 forward particle tracking paths from time = 115 to 600 sec (left)

and from time = 600 to 1,085 sec (right) in mesh 1 (using mixed tetrahedral
and triangular prism elements).

ERDC TR-11-10 40

Figure 21. Example 4 backward particle tracking paths from time = 1,085 to 600 sec (left)

and from time = 600 to 115 sec (right) in mesh 2 (using mixed hexahedral
and triangular prism elements).

3.5 Example 5: Seabrook flow field

Example 5 used a transient velocity field computed from the 2-D shallow
water module of ADH (ADH 2010) that was generated for the Seabrook
Fish Larval Transport Study in the city of New Orleans, LA (Tate et al.
2010). Figure 22 shows the bathymetry of the study domain, which was
discretized using 35,649 triangular elements and 19,719 nodes. All boun-
daries, except for the tidal boundary on the east side of the domain, were
defined as closed boundaries with zero normal flux.

The computed velocity field from time = 3,888,000 to 6,300,000 sec,
which corresponded to 00:00:00 on February 16, 2008 and 22:00:00 on
March 13, 2008, was used for this simulation. The velocity was computed
every 30 minutes for a total of 1,341 velocity time steps. A group of par-
ticles was specified at six different locations at time = 4,000,000 sec
(G1–G6, Figure 23), where each group contained 400 particles distributed
evenly on a 15.25-m (50-ft) radius circle. Figure 24 shows the particle dis-
tributions at various times using RK45, where the initial PT time step was
set to 5 min. Figure 25 provides individual views of the particle distribu-
tions of G2, G5, and G6 at the start and end times.

ERDC TR-11-10 41

Figure 22. Bathymetry of the Seabrook Fish Larval Transport Study domain.

Figure 23. Six groups of particles populated at time = 4,000,000 sec
for tracking in Example 5, where each group contained 400 particles.

ERDC TR-11-10 42

Figure 24. Example 5 PT results at various times.

Gl G4 Gl G4
' (

G2 G2
' . ,~:)

. "--. -. ~· ~

G3 G3

G5 G5

Time = 4,300,000 Time = 4,500,000

Gl G4
Gl G4 ,,

7

G2 G2
' --~....:. ·~· ... ,,

G3 G3

G5 G5

Time = 5,000,000 Time = 5,500,000

G4 G4

G2 G2
\

~- .,
·. I

(

Gl
.. .

'·-'·;;
\.~"· ' ·,·__;..' Gl
G3 G3

G5 G5

Time = 6,000,000 Time = 6,2900,000

ERDC TR-11-10 43

Figure 25. Zoom-in of Example 5 PT results for the G2, G5, and G6 particles.

The evolution of each particle group’s distribution can assist in the under-
standing and analysis of the local flow pattern associated with that group
at various times. For instance, the following observations can be made:

1. The particles in G2, G5, and G6 remained in close proximity as a group
(Figure 25).

2. There was significant mixing for the G1, G3, and G4 particles due to
fast flow through nearby narrow channels (Figure 24).

3. The G5 particles moved only short distances (Figure 25), indicating
very slow flow in the area where the G5 particles were populated.

4. The G6 particles had migrated afar (Figure 24) during the PT period of
time.

5. Many G3 particles were trapped in the central wetland area (Figure 23)
after being pushed into that area (Figure 24).

ERDC TR-11-10 44

3.6 Example 6: Umatilla groundwater flow field

Example 6 employed a steady-state velocity field computed from a 3-D
groundwater model that was constructed to test the effectiveness of vari-
ous alternatives for RDX (Cyclotrimethylenetrinitramine) cleanup at the
Umatilla Chemical Depot site (Umatilla, OR). The steady-state velocity
employed for this example was generated for an alternative that con-
sidered two pumping wells, PW1 and PW2, with extraction rates of
567.8 liters per minute (L/m) (150 gallons per minute (gpm)) on the
downstream side of the RDX contamination zone, plus a continuous
injection of clean water above the contamination zone to mobilize the RDX
trapped in the unsaturated zone (Figure 26). An enforced head was
applied to the ground surface nodes associated with the contamination
zone to mimic the water stage of a lagoon constructed above the
contamination zone. The model domain was composed of 172,140 nodes
and 320,378 triangular prism elements (Figure 26).

Figure 26. Umatilla groundwater model mesh and the water injection and groundwater

pumping associated with an RDX cleanup alternative.

ERDC TR-11-10 45

Figure 27 shows the 20-day backward PT paths of 14 particles originated
at various depths along the well screen of PW1. A color scheme depicts
path segments of different tracking time periods. On the other hand,
Figure 28 shows the 100-day forward PT paths of 24 particles that were
located initially on the boundary of the injection area using a similar color
scheme. It shows that the particles originating from the far end of the
injection area will not be captured by PW1 with a pumping rate of
567.8 L/m (150 gpm).

Figure 27. 20-day backward PT from PW1 (14 particles).

To help understand the effectiveness of PW1 and PW2 for RDX remedia-
tion, two circles of 400 particles, each with radii of 3.05 m (10 ft) (P_R10,
Figure 29) and 7.6 m (25 ft) (P_R25, Figure 29), were placed on the injec-
tion area for forward PT. The particles of P_R10 appear in white and the
particles of P_R25 are highlighted using a color spectrum.

ERDC TR-11-10 46

Figure 28. 100-day forward PT from injection (24 particles).

Figure 29. Two groups of particles (P_R10 and P_R25) populated at time = 0 day for forward

PT in Example 5, where each group had 400 particles.

ERDC TR-11-10 47

Figure 30 depicts the distributions of the particles of P_R10 and P_R25 at
various times in top view, while Figure 31 shows an oblique view, i.e., pro-
jected perspective, from inside of the 3-D domain. From these two figures,
the following are observed:

1. The forced water injection effectively drove particles down to the lower
aquifers.

2. Particles entered the pumping wells from the bottom portion even
though the wells were screened from top to bottom.

3. PW1 captured most of the P_R10 (white) particles and PW2 captured
the remainder.

4. All P_R10 particles entered the two pumping wells before time = 200 d
(days).

5. PW1 and PW2 were not able to capture all P_R25 particles: particles
highlighted green continued past the two pumping wells.

Figure 30. Example 6 PT results at various times in top view for particles of P_R10

(in white color) and P_R25 (in rainbow colors).

ERDC TR-11-10 48

Figure 31. Example 6 PT results at various times in oblique view for particles of P_R10

(in white color) and P_R25 (in rainbow colors).

ERDC TR-11-10 49

4 Summary

This report describes the initial effort of developing a particle tracking
computer program named PT123. PT123 was designed to perform accurate
and efficient particle tracking of massless particles for (1) solving multi-
dimensional transport problem using the ELLAM numerical method as
proposed in the Civil Works Basic Research project entitled “Efficient
Resolution of Complex Transport Phenomena Using Eulerian-Lagrangian
Techniques,” and (2) enhancing ERDC’s modeling capability through
linkage to or incorporation into existing flow, transport, and individual-
based particle tracking models.

Given either node-based or element-based velocity fields, PT123 can track
particles forward or backward in 1-, 2-, and 3-D unstructured or converted
structured meshes. The elements used to construct PT123 meshes are line
elements in 1-D, triangular and/or quadrilateral elements in 2-D, and
tetrahedral, triangular prism, and/or hexahedral elements in 3-D. Various
RK schemes are available in PT123 to solve the ordinary differential equa-
tions describing the motion of massless particles, where adaptive time
integration can be used to meet a user-specified accuracy requirement.
PT123 implements both EBE- and NEBE-based tracking. The EBE-based
tracking technique is employed to minimize the element searching effort
when tracking can go beyond one element. PT123 also conducts velocity
projection to perform smooth tracking along closed boundaries. A 1-D
example was designed to highlight tracking error introduced by using
node-based velocity for flow fields accounting for heterogeneity. Three test
examples in multiple dimensions were used to examine PT123’s computa-
tional accuracy. A 2-D transient surface water flow field simulated using
ADH and a 3-D groundwater velocity field using WASH123D were also
employed to demonstrate PT123’s application in real-world problems.

Future advancements may include (1) parallelization, (2) GUI develop-
ment, (3) library format, (4) incorporation of mechanisms/processes that
modify tracking velocities, and (5) development of auxiliary tools to con-
vert data from finite difference or finite volume models to the PT123
format.

ERDC TR-11-10 50

References
ADH. 2010. ADaptive Hydraulics Modeling. https://adh.usace.army.mil/

Bensabat J., Q. Zhou, and J. Bear. 1998. An adaptive path line-based particle tracking
algorithm for the Eulerian–Lagrangian method. Advances in Water Resources
23:383–397.

.

Cash, J. R. 1989. A block 6(4) Runge–Kutta formula for nonstiff initial value problems.
ACM Trans Math Software 15(1):15–28.

Cheng, J.-R. C., and P. E. Plassman. 2004. Parallel particle tracking framework for
applications in scientific computing. The Journal of Supercomputing 28:149–
164.

Cheng, J.-R., H.-P. Cheng, and G.-T. Yeh. 1996. A particle tracking technique for the
Lagrangian-Eulerian finite element method in multi-dimensions. International
Journal for Numerical Methods in Engineering 39: 1115–1136.

Farthing, M., and C. Kees. 2009. Evaluating finite element methods for the level set
equation. ERDC/CHL-TR-09-11. Vicksburg, MS: U.S. Army Engineer Research
and Development Center.

Goodwin, R. A., J. M. Nestler, J. J. Anderson, L. J. Weber, and D. P. Loucks. 2006.
Forecasting 3-D fish movement behavior using a Eulerian-Lagrangian-agent
method (ELAM). Ecological Modelling 192:197–223.

Jury, W. A., W. R. Gardner, and W. H. Gardner. 1991. Soil Physics. John Wiley & Sons,
5th edition.

Liu, Y., R. H. Weiberg, C. Hu, and L. Zheng. 2011. Tracking the deepwater horizon oil
spill: a modeling perspective. EOS, Transactions, American Geophysical Union
92(6):45–46.

MacDonald, N. J, M. H. Davies, A. K. Zundel, J. D. Howlett, Z. Demirbilek, J. Z. Gailani,
T. C. Lackey, and J. Smith. 2006. PTM: Particle Tracking Model, Report 1:
Model theory, implementation, and example applications. ERDC/CHL TR-06-
20. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

Oliveira, A., and A. M. Baptista. 1998. On the role of tracking on Eulerian-Lagrangian
solutions of the transport equations. Advances in Water Resources 21:539–554.

Pokrajac, D., and R. Lazic. 2002. An efficient algorithm for high accuracy particle track-
ing in finite elements. Advances in Water Resources 25:353–369.

Pollock, D. W. 1988. Semianalytical computation of path lines for finite difference
models. Ground Water 26(6):743–50.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 1992. Numerical
recipes in C. Cambridge University Press, 2nd edition.

ERDC TR-11-10 51

Russell, T. F. and M. A. Celia. 2002. An overview of research on Eulerian-Lagrangian
localized adjoint methods (ELLAM). Advances in Water Resources 25(8-
12):1215–1231.

Tate, J. N., T. C. Lackey, and T. O. McAlpin. 2010. Seabrook fish larval transport study.
ERDC/CHL TR-10-12. Vicksburg, MS: U.S. Army Engineer Research and
Development Center.

ERDC TR-11-10 52

Appendix A: Program Structure of PT123
Program structure description

Figure A1 is the flow chart of PT123. As shown in Figure A1, PT123 is
composed of four major components:

• Input
• Data Preparation
• PT Computation
• Output

Figure A1. Flow chart of PT123.

ERDC TR-11-10 53

The Input component reads the geometry of the computational domain,
flow field, velocity conversion factor, particle specific, and boundary
characteristics data. The Data Preparation component processes the data
from the Input component to prepare necessary information for PT com-
putation, which includes node-element connectivity, element character-
istic length, BINARY flow field and conversion factor, and coordinate shift.
In the PT Computation component, there is a time loop for designated PT
computation which can be either forward or backward PT. When transient
velocities are employed for PT computation, PT123 first identifies the
hydrodynamic time interval that includes the user-specified start time of
tracking; followed by retrieving the flow fields and velocity conversion
factors associated with the two bounding time steps (say tn and tn+1) of that
hydrodynamic time interval from the BINARY files prepared in the Data
Preparation component; it then computes the tracking velocities associ-
ated with the two time steps by combining the flow field and the velocity
conversion factor (tracking velocity = (input velocity)/(velocity conversion
factor)); finally it implements PT computation for each particle from the
tracking start time to either tn (for backward PT) or tn+1 (for forward PT)
using the user-specified tracking technique (i.e., EBE or NEBE). During
PT computation, PT123 stores particle locations at user-specified times in
what are called the trajectory arrays. After this first hydrodynamic time
interval, the PT computation proceeds to the next time interval and
repeats the aforementioned processes until the user-specified end time of
tracking is reached. Alternatively, when a steady-state velocity condition is
specified, a hydrodynamic time interval is generated with two bounding
time steps, tn and tn+1, that match the tracking start and end times. The
computed tracking velocities of tn and tn+1 will be identical and based on
the steady-state flow field and velocity conversion factor. In this case, the
PT computational time loop is contained by a single hydrodynamic time
interval, therefore, allowing PT123 to call the same subroutines as the
transient velocity. After the completion of each PT computation, the Out-
put component writes the data stored in the trajectory arrays to designated
ASCII and BINARY solution files for analysis and post-processing.

Figure A2 depicts the program structure of PT123, where each box repre-
sents a subroutine included in PT123 and each arrow connects a pair of
parent-child subroutines. Consistent shade color code is used to relate
each subroutine to the four components of PT123 mentioned in Figure A1.

ERDC TR-11-10 54

Figure A2. Program structure of PT123.

Subroutine description

In the following, a brief description of each subroutine with its parent and
child associations is given.

1. PT123: This is the main program. It reads information necessary to
conduct PT, calls either EBE_PT or NEBE_PT to execute PT, and
writes out the tracking history of each particle.

Calling: STRIP, GEOM123, COORD_SHIFT, LRL123, BN123, CL123,
OBND123, BINARY_PREPARE, FIND_1D_ELEMENT, EBE_PT,
NEBE_PT, OUTPUT123.

ERDC TR-11-10 55

2. EBE_PT: This subroutine implements PT on an element-by-element
basis, where various RK schemes can be used for tracking
computation.

Called by: PT123

Calling: EL_VEL_PREP, DT_ETRACK, ELTRAK123

3. NEBE_PT: This subroutine implements PT on a non-element-by-
element basis, where various RK schemes can be used for tracking
computation.

Called by: PT123

Calling: INTRP123, EB_CHECK, LOCATE_M, RK1_NEBE_PT,
 RK2_NEBE_PT, RK4_NEBE_PT, RK45_NEBE_PT,
 PT_STORE

4. ELTRAK123: This subroutine executes PT within an element using
the designated RK scheme.

Called by: EBE_PT

Calling: RK45_EBE_PT, RK124_EBE_PT, INTRP123, PHI_COMP,
 PT_STORE, EB_CHECK

5. RK1_NEBE_PT: This subroutine executes PT on a non-element-by-
element basis using the RK1 scheme for each tracking computation.

Called by: NEBE_PT

Calling: EL_VEL_PREP, VEL123, ES123

6. RK2_NEBE_PT: This subroutine executes PT on a non-element-by-
element basis using the RK2 scheme for each tracking computation.

Called by: NEBE_PT

Calling: EL_VEL_PREP, VEL123, ES123

ERDC TR-11-10 56

7. RK4_NEBE_PT: This subroutine executes PT on a non-element-by-
element basis using the RK4 scheme for each tracking computation.

Called by: NEBE_PT

Calling: EL_VEL_PREP, VEL123, ES123

8. RK45_NEBE_PT: This subroutine executes PT on a non-element-by-
element basis using the embedded 4th- and 5th-order RK scheme for
each tracking computation.

Called by: NEBE_PT

Calling: EL_VEL_PREP, VEL123, ES123

9. EL_VEL_PREP: This subroutine prepares element nodal velocity for
PT within the specified element using specified special and temporal
interpolation. When the particle being tracked hits a closed boundary
segment in 2-D or a closed boundary face in 3-D, tangential velocity
is computed at each of the element nodes on the closed boundary and
will be used for the following PT to ensure tracking along closed
boundary.

Called by: EBE_PT, RK1_NEBE_PT, RK2_NEBE_PT,
 RK4_NEBE_PT, RK45_NEBE_PT

Calling: V_PROJTN23

10. V_PROJTN23: This subroutine computes the projected velocity at
element nodes on the closed boundary.

Called by: EL_VEL_PREP

11. RK45_EBE_PT: This subroutine implements adaptive time
integration using embedded 4th- and 5th-order RK for each tracking
computation.

Called by: ELTRAK123

ERDC TR-11-10 57

Calling: VEL123, INTRP123, PHI_COMP

12. RK124_EBE_PT: This subroutine implements 1st-, 2nd-, or 4th-
order RK for each tracking computation.

Called by: ELTRAK123

Calling: VEL123, INTRP123, PHI_COMP

13. STRIP: This subroutine retrieves the desired file name by removing
the leading and trailing spaces.

Called by: PT123

14. GEOM123: This subroutine reads the element indices and nodal
coordinates of unstructured mesh within which the desired PT is
conducted.

Called by: PT123

Calling: CRACKD, CRACKI

15. COORD_SHIFT: This subroutine conducts coordinate shift in all
directions given specified shifts.

Called by: PT123

16. LRL123: This subroutine generates pointer arrays for node-element
connectivity.

Called by: PT123

17. BN123: This subroutine determines boundary-node information,
where IB(N) is set to zero if node N is an interior node and 1 if it is a
boundary node.

Called by: PT123

ERDC TR-11-10 58

18. CL123: This subroutine computes the characteristic length of a given
element.

Called by: PT123

19. OBND123: This subroutine reads the open-boundary-node informa-
tion and sets IB(NP) to 1 if node NP is an open-boundary node.

Called by: PT123

Calling: CRACKI

20. BINARY_PREP: This subroutine prepares BINARY velocity and
velocity conversion factor files based on the given ASCII files.

Called by: PT123

21. PHI_COMP: This subroutine loops over all possible scenarios to
(1) determine PHI if the particle being tracked passes through the
specified element and ends at a location outside of the element and
(2) locate element node I1, I2, and I3 for the successive tracking when
the particle does exit the element.

Called by: ELTRAK123, RK45_EBE_PT, RK124_EBE_PT

Calling: PHI123

22. PHI123: This subroutine computes PHI based on the given D1, D2,
and D12 values.

Called by: PHI_COMP

Calling: EB_CHECK

23. EB_CHECK: This subroutine prepares the I1, I2, I3 information for
the successive tracking when the tracked particle hits an element
boundary.

Called by: NEBE_PT, ELTRACK123, PHI123

ERDC TR-11-10 59

24. VEL123: This subroutine computes the time derivative functional
value needed for using the designated RK scheme, where the time
derivative for PT is velocity.

Called by: RK45_EBE_PT, RK124_EBE_PT, RK1_NEBE_PT,
 RK2_NEBE_PT, RK4_NEBE_PT, RK45_NEBE_PT

Calling: INTRP123

25. INTRP123: This subroutine computes the values of spatial interpo-
lation functions.

Called by: ELTRAK123, VEL123, RK45_EBE_PT,
RK124_EBE_PT, NEBE_PT

Calling: ADJUST123, XSI_2, XSI_3, XSI_3P

26. ES123: This subroutine searches for the element containing point Q
given the element connectivity and the locations of points P and Q,
where a ray search technique is employed.

Called by: RK1_NEBE_PT, RK2_NEBE_PT, RK4_NEBE_PT,
 RK45_NEBE_PT

Calling: EL_INTERSECT123

27. EL_INTERSECT123: This subroutine locates the possible intersec-
tions of the ray passing through given points P and Q with the boun-
dary nodes (1-D), sides (2-D), or faces (3-D) of a specified element.

Called by: ES123

Calling: FIND_INTERSECT, EB_CHECK, INTRP123

28. FIND_INTERSECT: This subroutine computes the intersection of the
ray passing through given points P and Q with a specified element
node (1-D), side (2-D), or face (3-D).

Called by: EL_INTERSECT123

ERDC TR-11-10 60

29. PT_STORE: This subroutine records tracking locations at the
specified frequency.

Called by: ELTRAK123, NEBE_PT

30. ADJUST123: This subroutine (1) determines the indicators IADJUST,
IXI, and IDI for necessary location adjustment when the particle is
sufficiently close to an element boundary and (2) adjusts the inter-
polation parameters DN, XI, and DI as needed.

Called by: INTRP123

31. XSI_2: This subroutine computes the local coordinates associated
with a location within a quadrilateral element based on the given
Cartesian coordinates.

Called by: INTRP123

32. XSI_3: This subroutine computes the local coordinates associated
with a location within a hexahedral element based on the given
Cartesian coordinates.

Called by: INTRP123

33. XSI_3P: This subroutine computes the local/natural coordinates
associated with a location within a triangular prism element based on
the given Cartesian coordinates.

Called by: INTRP123

34. CRACKD: This subroutine retrieves real (floating-point) data from a
line data record.

Called by: GEOM123

35. CRACKI: This subroutine retrieves integer data from a line data
record.

Called by: GEOM123, OBND123

ERDC TR-11-10 61

36. LOCATE_M: This subroutine finds element M using node-element
connectivity based on the given global node ID’s I1, I2, and/or I3.
Element M is different from the given element M0 and contains a no-
flow boundary element edge (2-D) or face (3-D).

Called by: NEBE_PT

37. FIND_1D_ELEMENT: This subroutine locates the 1-D element that
contains the particle of interest based on the location of the particle.

Called by: PT123

38. OUTPUT123: This subroutine writes particle trajectories to the desig-
nated ASCII and BINARY solution files.

Called by: PT123

ERDC TR-11-10 62

Appendix B: Input Guide of PT123

This appendix describes all files needed for running the executable of
PT123. These files are

1. a super file;
2. a geometry file;
3. a particle specifics file;
4. a boundary file;
5. velocity files;
6. velocity conversion factor files,
7. solution files.

The details of these files, except for the solution files, are described in this
appendix. The solution files are described in Appendix C.

Super file

When PT123 is executed, the user will be asked to provide the name of the
super file that specifies all the input and output files necessary for PT
computation. The contents of a super file are listed below.

1st line (free format)

Entry Variable/Header Type Definition

1 NEQ Integer Number of dimension (1 for 1-D, 2 for 2-D, and 3 for 3-D
PT computation)

2nd line (free format)

Entry Variable/Header Type Definition

1 ID_VEL Integer 0 = steady velocity; 1 = transient velocities

2 ID_VFILE Integer 0 = read ASCII velocity; 1 = read BINARY velocity

3rd line (free format)

Entry Variable/Header Type Definition

1 DN_SAFE Real Safe margin associated with the interpolation functional
value (DN). DN is set to 0 if DN was computed a negative
value and abs(DN) is smaller than DN_SAFE. Likewise, DN
is set to 1 if DN was computed greater than 1 and abs(DN-
1) is smaller than DN_SAFE.

4th line (free format)

Entry Variable/Header Type Definition

1 ID_BN Integer 1 = all boundary nodes are set to be open-boundary
nodes;
0 = open boundary nodes are defined in the open
boundary file, i.e., OBND_fn specified in the 7th line below.

ERDC TR-11-10 63

5th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 GEOM Character Geometry file header

2 GEOM_fn Character Geometry file name

6th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 PTSP (or PTS2) Character PT specifics file header

2 PTSP_fn Character PT specifics file name

7th line (A4, 1X, A80): this line is optional

Entry Variable/Header Type Definition

1 OBND Character Open-boundary file header

2 OBND_fn Character Open-boundary file name

8th – 13th lines are used only when node-based velocity is considered.
8th line (A4, 1X, A80) is required when ID_VFILE = 0.

Entry Variable/Header Type Definition

1 VNAS Character Node-Based Velocity file header

2 VNAS_fn Character Node-Based Velocity file name (ASCII)

9th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 VNBF Character Node-Based Velocity file header

2 VNBF_fn Character Node-Based Velocity file name (BINARY, forward)

10th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 VNBB Character Node-Based Velocity file header

2 VNBB_fn Character Node-Based Velocity file name (BINARY, backward)

11th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 NEMA Character Node-Based Velocity Conversion Factor file header

2 NEMA_fn Character Node-Based Velocity Conversion Factor file name (ASCII)

12th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 NEMF Character File header of Node-Based Velocity Conversion Factor used
for forward PT

2 NEMF_fn Character Node-Based Velocity Conversion Factor file name (BINARY)

13th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 NEMB Character File header of Node-Based Velocity Conversion Factor used
for backward PT

2 NEMB_fn Character Node-Based Velocity Conversion Factor file name (BINARY)

8th – 13th lines are used only when element-based velocity is considered.
8th line (A4, 1X, A80) is required when ID_VFILE = 0.

Entry Variable/Header Type Definition

1 VEAS Character Element-Based Velocity file header

2 VEAS_fn Character Element-Based Velocity file name (ASCII)

9th line (A4, 1X, A80)

ERDC TR-11-10 64

Entry Variable/Header Type Definition

1 VEBF Character Element-Based Velocity file header

2 VEBF_fn Character Element-Based Velocity file name (BINARY, forward)

10th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 VEBB Character Element-Based Velocity file header

2 VEBB_fn Character Element-Based Velocity file name (BINARY, backward)

11th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 EEMA Character Element-Based Velocity Conversion Factor file header

2 EEMA_fn Character Element-Based Velocity Conversion Factor file name
(ASCII)

12th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 EEMF Character File header of Element-Based Velocity Conversion Factor
used for forward PT

2 EEMF_fn Character Element-Based Velocity Conversion Factor file name
(BINARY)

13th line (A4,1X,A80)

Entry Variable/Header Type Definition

1 EEMB Character File header of Element-Based Velocity Conversion Factor
used for backward PT

2 EEMB_fn Character Element-Based Velocity Conversion Factor file name
(BINARY)

14th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 SAPT Character PT history solution file header

2 SAPT_fn Character PT history solution file name (ASCII)

15th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 SBPT Character PT history solution file header

2 SBPT_fn Character PT history solution file name (BINARY, for post-processing)

16th line (A4, 1X, A80): this line is optional; it is needed only when user-specified mechanism is used to compute tracking
velocity

Entry Variable/Header Type Definition

1 USVP Character File header of user-specified mechanism parameters used
for computing tracking velocity

2 USVP_fn Character User-specified tracking velocity mechanism parameters file
name (ASCII)

17th line (A4, 1X, A80)

Entry Variable/Header Type Definition

1 ENDR Character Header to signal the end of super file

2 TEST.END Character Filename to signal the end of super file

ERDC TR-11-10 65

< Sample 1 > Use node-based velocity and specify open-boundary nodes in
a data file.

2 NEQ
1 0 ID_VEL, ID_VFILE
1.0e-5 DN_SAFE
0 ID_BN
GEOM test_swirl.2dm
PTSP test_swirl.pt2
OBND test_swirl.ob2
VNAS test_swirl.vn2
VNBF forward_swirl.vn2
VNBB backward_swirl.vn2
NEMA test_swirl.nemc2
NEMF forward_swirl.nemc2
NEMB backward_swirl.nemc2
SAPT test_swirl.out2
SBPT test_swirl.out2binary
ENDR TEST.END

< Sample 2 > Use element-based velocity and set all boundary nodes to
open boundary nodes.
2 NEQ
1 0 ID_VEL, ID_VFILE
1.0e-5 DN_SAFE
1 ID_BN
GEOM test_swirl.2dm
PTSP test_swirl.pt2
VEAS test_swirl.ve2
VEBF forward_swirl.ve2
VEBB backward_swirl.ve2
EEMA test_swirl.eemc2
EEMF forward_swirl.eemc2
EEMB backward_swirl.eemc2
SAPT test_swirl.out2
SBPT test_swirl.out2binary
ENDR TEST.END

Geometry file

This file includes the element indices and nodal coordinate information
associated with the unstructured mesh within which PT is conducted. The
contents of a geometry file are listed below.

1st line (A4)

Entry Variable/Header Type Definition

1 MESHnD Character Header to indicate that this is a geometry file;
n = 1 for 1-D, 2 for 2-D, and 3 for 3-D

Between the 1st and the last line, we may have GE2, GE3, GE4, GE6, or GE8 as headers to present element indices for
each global element as well as GN to specify nodal coordinates for each global node. For 1- and 2-D tracking, the X- and
Y-coordinates of global nodes are given, while the Z-coordinate at each node is set to zero by default. If the Z-coordinate is
to be read with the GN header, a ZZ header must be given in a line before the first line using the GN header.

ERDC TR-11-10 66

Lines using GE2 as header (A3,1X, free format): 1-D line element

Entry Variable/Header Type Definition

1 GE2 Character GE2 header

2 M Integer Global element ID

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the
element

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the
element

Lines using GE3 as header (A3,1X, free format): 2-D triangular element

Entry Entry Type Definition

1 GE3 Character GE3 header

2 M Integer Global element ID

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the
element

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the
element

5 IE(3,M) Integer Global node ID corresponding to the 3rd node of the
element

Lines using GE4 as header (A3,1X, free format): 2-D quadrilateral or 3-D tetrahedral element

Entry Variable/Header Type Definition

1 GE4 Character GE4 header

2 M Integer Global element ID

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the
element

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the
element

5 IE(3,M) Integer Global node ID corresponding to the 3rd node of the
element

6 IE(4,M) Integer Global node ID corresponding to the 4th node of the
element

Lines using GE6 as header (A3,1X, free format): 3-D triangular prism element

Entry Variable/Header Type Definition

1 GE6 Character GE6 header

2 M Integer Global element ID

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the
element

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the
element

5 IE(3,M) Integer Global node ID corresponding to the 3rd node of the
element

6 IE(4,M) Integer Global node ID corresponding to the 4th node of the
element

7 IE(5,M) Integer Global node ID corresponding to the 5th node of the
element

8 IE(6,M) Integer Global node ID corresponding to the 6th node of the
element

Lines using GE8 as header (A3,1X, free format): 3-D hexahedral element

Entry Variable/Header Type Definition

1 GE8 Character GE8 header

ERDC TR-11-10 67

2 M Integer Global element ID

3 IE(1,M) Integer Global node ID corresponding to the 1st node of the
element

4 IE(2,M) Integer Global node ID corresponding to the 2nd node of the
element

5 IE(3,M) Integer Global node ID corresponding to the 3rd node of the
element

6 IE(4,M) Integer Global node ID corresponding to the 4th node of the
element

7 IE(5,M) Integer Global node ID corresponding to the 5th node of the
element

8 IE(6,M) Integer Global node ID corresponding to the 6th node of the
element

9 IE(7,M) Integer Global node ID corresponding to the 7th node of the
element

10 IE(8,M) Integer Global node ID corresponding to the 8th node of the
element

Line using ZZ as header (A2): Z-coordinate signal

Entry Variable/Header Type Definition

1 ZZ Character ZZ header to signal the input of the Z-coordinate of global
node with the GN header for 1- or 2-D tracking

Lines using GN as header (A2,1X, free format): coordinates of global nodes

Entry Variable/Header Type Definition

1 GN Character GN header

2 N Integer Global node ID

3 XG(1,N) Real X-coordinate of the global node

4 XG(2,N) Real Y-coordinate of the global node

5 XG(3,N) Real Z-coordinate of the global node

Last line (A4)

Entry Variable/Header Type Definition

1 ENDR Character Header to signal the end of geometry file

< Sample > Mixed 2-D triangular-quadrilateral element mesh.
MESH2D
GE4 1 2 3 24 23
GE4 2 4 5 26 25
GE4 3 6 7 28 27
…
GE3 11 1 2 23
GE3 12 1 23 22
GE3 13 3 4 25
…
ZZ
GN 1 0.0000000 0.0000000 2.0000000
GN 2 10.0000000 0.0000000 3.0000000
…
ENDR

ERDC TR-11-10 68

PT specifics file

This file specifies data associated with the computation of PT. The con-
tents of a PT specifics file are listed below.

When Particles Start From Specified Global Node Locations (PTSP is used
as the header in the PT super file):

1st line (free format)

Entry Variable/Header Type Definition

1 ID_RK Integer RK schemes used for PT computation:
45 = embedded 4th- and 5--order RK is used;
1 = 1st-order RK is used (no error estimator applied);
2 = 2nd-order RK is used (no error estimator applied);
4 = 4th-order RK is used (no error estimator applied);

2 ID_EBE Integer Indicator for element-by-element tracking:
0 = use NEBE tracking
1 = use EBE tracking

2nd line (free format)

Entry Variable/Header Type Definition

1 NPT Integer Number of particles to be tracked

3- – (NPT+2)th lines (free format): each line specified a global node ID as the start location of PT

Entry Variable/Header Type Definition

1 IDPT(ipt) Integer ID of the global node corresponding to the iptth particle

(NPT+3)th line (free format)

Entry Variable/Header Type Definition

1 IBF Integer -1 = backward PT; 1 = forward PT

(NPT+4)th line (free format)

Entry Variable/Header Type Definition

1 T_START Real Time from which PT starts

(NPT+5)th line (free format)

Entry Variable/Header Type Definition

1 DT_PT Real Time duration for PT

2 DT_INIT0 Real Initial time step size for PT in an element

3 ID_DT Integer 0 = use DT_INIT0 as the time step size for the first PT
computation in each active element; 1 = use the Courant
number-based time step size (computed) for the first PT
computation in each active element

4 CR Real Courant number used to estimate the initial time step size
when desired

(NPT+6)th line (free format)

Entry Variable/Header Type Definition

1 NT_PT_OUTPUT Integer Number of evenly distributed time intervals during DT_PT
for storing the locations of tracked particles for output
purpose.

(NPT+7)th line (free format)

Entry Variable/Header Type Definition

ERDC TR-11-10 69

1 ATOL Real Absolute error tolerance for adaptive time integration

2 RTOL Real Relative error tolerance for adaptive time integration

3 SF Real Safety factor used for adaptive time step

< Sample > 2-D PT with 20 particles starting from global nodes.
45 1 ID_RK, ID_EBE
20 NPT
 1 IDPT(1)
 23 IDPT(2)
…
179 IDPT(19)
200 IDPT(20)
1 IBF
0.0 T_START
16.0 1.0 1 0.5 DT_PT, DT_INIT, ID_DT, CR
16 NT_PT_OUTPUT
1.0e-8 0.0e0 0.9e0 ATOL, RTOL, SF

When Particles Start From Non-Global Node Locations (PTS2 is used as the
header in the PT super file):

1st line (free format)

Entry Variable/Header Type Definition

1 ID_RK0 Integer RK schemes used for PT computation
45 = embedded 4th- and 5th-order RK is used;
24 = 2nd- and 4th-order RK is used;
1 = 1st-order RK is used (no error estimator applied);
2 = 2nd-order RK is used (no error estimator applied);
4 = 4th-order RK is used (no error estimator applied);

2 ID_EBE Integer Indicator for element-by-element tracking:
0 = use NEBE tracking
1 = use EBE tracking

2nd line (free format)

Entry Variable/Header Type Definition

1 NPT Integer No. of particles to be tracked

3rd – (NPT+2)th lines (free format): each line specified the start location of a particle

Entry Variable/Header Type Definition

1 MPT(ipt) Integer ID of the global element containing the iptth particle before
PT begins

2 XPT(1,1,ipt) Real X-coordinate of the iptth particle before PT begins

3 XPT(1,2,ipt) Real Y-coordinate of the iptth particle before PT begins

4 XPT(1,3,ipt) Real Z-coordinate of the iptth particle before PT begins (needed
for 3-D PT)

(NPT+3)th line (free format)

Entry Variable/Header Type Definition

1 IBF Integer -1 = backward PT; 1 = forward PT

(NPT+4)th line (free format)

ERDC TR-11-10 70

Entry Variable/Header Type Definition

1 T_START Real Time from which PT starts

(NPT+5)th line (free format)

Entry Variable/Header Type Definition

1 DT_PT Real Time duration for PT

2 DT_INIT0 Real Initial time step size for PT in an element

3 ID_DT Integer 0 = use DT_INIT as the time step size for the first PT
computation in each active element; 1 = use the Courant
number-based time step size (computed) for the first PT
computation in each active element

4 CR Real Courant number used to estimate the initial time step size
when desired

(NPT+6)th line (free format)

Entry Variable/Header Type Definition

1 NT_PT_OUTPUT Integer Number of evenly distributed time intervals during DT_PT
for storing the locations of tracked particles for output
purpose.

(NPT+7)th line (free format)

Entry Variable/Header Type Definition

1 ATOL Real Absolute error tolerance for adaptive time integration

2 RTOL Real Relative error tolerance for adaptive time integration

3 SF Real Safety factor used for adaptive time step

< Sample > 2-D PT with 400 particles using element ID and coordinates to
define the start locations.
45 ID_RK
400 NPT
626 0.649981500 0.752356097 MPT(1), XPT(1,1,1), XPT(1,2,1)
626 0.649925990 0.754711614 MPT(2), XPT(1,1,2), XPT(1,2,2)
…
586 0.649981501 0.747643928 MPT(399), XPT(1,1,399), XPT(1,2,399)
627 0.650000005 0.750000026 MPT(400), XPT(1,1,400), XPT(1,2,400)
1 IBF
0.0 T_START
16.0 1.0 0 1.0 DT_PT, DT_INIT0, ID_DT, CR
16 NT_PT_OUTPUT
1.0e-8 0.0e0 0.9e0 ATOL, RTOL, SF

Velocity files

Either ASCII or BINARY velocity files can be read by PT123 for PT com-
putation. When ID_VFILE is set to zero in the super file, an ASCII velocity
file is used. In this case, a BINARY velocity file used for forward PT will be
generated and output. If backward PT is desired, i.e., IBF is set to -1 in the
PT specifics file, a BINARY velocity file used for backward PT will also be
generated and output. When the BINARY velocity files are available, the
user can set ID_VFILE to 1 for different PT computation using the same

ERDC TR-11-10 71

velocity fields, which results in shorter preparation time when compared
to using the ASCII velocity file. The BINARY velocity file names are
specified in the super file. The contents of an ASCII velocity file are listed
below. It is noted that the number of velocity components is equal to the
number of dimension for tracking. Although both X- and Y-coordinates
are input in the geometry file for 1-D tracking, this velocity file provides
only the velocity along the 1-D direction that tracking occurs. For instance,
in cross section-averaged 1-D channel flow simulation, the velocity is
computed along the channel coordinate though X- and Y-coordinates are
given at global nodes. In this case, there is a conversion between the given
X-Y coordinate system and the channel coordinate system for
computation.

When Node-Based Velocity Is Considered:

1st line (free format)

Entry Variable/Header Type Definition

1 NNP Integer No. of global nodes

2 NEQ Integer 1 = 1-D; 2 = 2-D; 3 = 3-D

3 NTSTEP Integer No. of time steps at which the nodal velocity is given

The following (NNP+1) lines will repeat NTSTEP times: Line 1 is the time stamp, and other NNP lines contain the velocity
information for the NNP global nodes, from the 1st node to the NNPth node

Line 1 (A2, 2X, F20.10)

Entry Variable/Header Type Definition

1 TS Character Time stamp header

2 RTIME Real Time at which nodal velocity information is provided

Each line from Lines 2 through (NNP+1) specifies the velocity information (free format),
e.g., Line N+1 specifies the velocity at Node N.
The number of entries (velocity components) is equal to the number of dimension for tracking.

Entry Variable/Header Type Definition

1 VG(1,N) Real 1-D or X-velocity component at Node N (for 1-D/2-D/3-D)

2 VG(2,N) Real Y-velocity component at Node N (only for 2-D/3-D)

3 VG(3,N) Real Z-velocity component at Node N (only for 3-D)

Last line (A4)

Entry Variable/Header Type Definition

1 ENDR Character Header to signal the end of velocity file

ERDC TR-11-10 72

< Sample > 3-D node-based velocity.
9261 3 7 No. Global Nodes, No. Dimensions, No. Time Steps
TS 0.0000000
 5.0000000 -5.0000000 0.3000000
 5.0000000 -4.5000000 0.3000000
…
TS 200.0000000
 3.0000000 -3.0000000 0.2000000
 3.0000000 -2.7000000 0.2000000
…
TS 400.0000000
 1.0000000 -1.0000000 0.1000000
 1.0000000 -0.9000000 0.1000000
…
TS 600.0000000
 0.0000000 0.0000000 0.0000000
 0.0000000 0.0000000 0.0000000
…
TS 800.0000000
 -1.0000000 1.0000000 -0.1000000
 -1.0000000 0.9000000 -0.1000000
…
TS 1000.0000000
 -3.0000000 3.0000000 -0.2000000
 -3.0000000 2.7000000 -0.2000000
…
TS 1200.0000000
 -5.0000000 5.0000000 -0.3000000
 -5.0000000 4.5000000 -0.3000000
…
ENDR

When Element-Based Velocity Is Considered:

1st line (free format)

Entry Variable/Header Type Definition

1 NEL Integer No. of global elements

2 NEQ Integer 1 = 1-D; 2 = 2-D; 3 = 3-D

3 NTSTEP Integer No. of time steps at which the nodal velocity is given

The following (NEL+1) lines will repeat NTSTEP times: Line 1 is the time stamp, and other NEL lines contain the velocity
information for the NEL global elements, from the 1st element to the NELth element

Line 1 (A2, 2X, F20.10)

Entry Variable/Header Type Definition

1 TS Character Time stamp header

2 RTIME Real Time at which nodal velocity information is provided

Each line from Lines 2 through (NEL+1) specifies the velocity information (free format),
e.g., Line M+1 specifies the velocities of nodes associated with Element M;
Each line contains up to N3 entries (velocity components), where N3 = NEQ*NODE and NEQ and NODE are the number
of dimension for tracking and the number of nodes for Element M, respectively.

Entry Variable/Header Type Definition

1 VE(1,1,M) Real 1-D or X-velocity component at the 1st node of Element M
(for 1-D/2-D/3-D)

ERDC TR-11-10 73

2 VE(2,1,M) Real Y-velocity component at the 1st node of Element M (only
for 2-D/3-D)

3 VE(3,1,M) Real Z-velocity component at the 1st node of Element M (only
for 3-D)

…

N3-2 VE(1,NODE,M) Real 1-D or X-velocity component at the NODEth node of
Element M (for 1-D/2-D/3-D)

N3-1 VE(2,NODE,M) Real Y-velocity component at the NODEth node of Element M
(for 1-D/2-D/3-D)

N3 VE(3,NODE,M) Real Z-velocity component at the NODEth node of Element M
(only for 3-D)

Last line (A4)

Entry Variable/Header Type Definition

1 ENDR Character Header to signal the end of velocity file

< Sample > 3-D element-based velocity.
48000 3 7 NEL, NEQ, NTSTEP
TS 0.0000000
 5.0 -5.0 0.3 5.0 -4.5 0.3 4.5 -5.0 0.3 5.0 -5.0 0.3
 5.0 -4.5 0.3 4.5 -5.0 0.3 5.0 -5.0 0.3 5.0 -4.5 0.3
…
TS 200.0000000
 3.0 -3.0 0.2 3.0 -2.7 0.2 2.7 -3.0 0.2 3.0 -3.0 0.2
 3.0 -2.7 0.2 2.7 -3.0 0.2 3.0 -3.0 0.2 3.0 -2.7 0.2
…
TS 400.0000000
 1.0 -1.0 0.1 1.0 -0.9 0.1 0.9 -1.0 0.1 1.0 -1.0 0.1
 1.0 -0.9 0.1 0.9 -1.0 0.1 1.0 -1.0 0.1 1.0 -0.9 0.1
…
TS 600.0000000
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
…
TS 800.0000000
 -1.0 1.0 -0.1 -1.0 0.9 -0.1 -0.9 1.0 -0.1 -1.0 1.0 -0.1
 -1.0 0.9 -0.1 -0.9 1.0 -0.1 -1.0 1.0 -0.1 -1.0 0.9 -0.1
…
TS 1000.0000000
 -3.0 3.0 -0.2 -3.0 2.7 -0.2 -2.7 3.0 -0.2 -3.0 3.0 -0.2
 -3.0 2.7 -0.2 -2.7 3.0 -0.2 -3.0 3.0 -0.2 -3.0 2.7 -0.2
…
TS 1200.0000000
 -5.0 5.0 -0.3 -5.0 4.5 -0.3 -4.5 5.0 -0.3 -5.0 5.0 -0.3
 -5.0 4.5 -0.3 -4.5 5.0 -0.3 -5.0 5.0 -0.3 -5.0 4.5 -0.3
…
ENDR

Velocity conversion factor files

As mentioned previously, either ASCII or BINARY velocity files can be
read for PT computation. In PT123, the tracking velocity is defined to be
equal to the given velocity, i.e., velocity read from the velocity file, divided

ERDC TR-11-10 74

by the velocity conversion factor. In the porous media, for example, the
tracking velocity is the pore velocity that is equal to the Darcy velocity
divided by the effective moisture content. In this case, the given velocity is
the Darcy velocity, and the effective moisture content is the velocity con-
version factor. ID_VFILE is used to control the file type as explained
previously for the velocity file. The time steps in the velocity conversion
factor file must match those in the velocity file. The contents of an ASCII
velocity conversion factor file are listed below.

When Node-Based Velocity Is Used: each global node is assigned a conver-
sion factor at each time step.

1st line (free format)

Entry Variable/Header Type Definition

1 NNP Integer No. of global nodes

2 NTSTEP Integer No. of time steps at which velocity conversion factor is
given

The following (NNP+1) lines will repeat NTSTEP times: Line 1 is the time stamp, and other NNP lines contain the velocity
conversion factor information for the NNP global nodes, from the 1st node to the NNPth node

Line 1 (A2, 2X, F20.10)

Entry Variable/Header Type Definition

1 TS Character Time stamp header

2 RTIME Real Time at which velocity conversion factor information is
provided

Each line from Lines 2 through (NNP+1) specifies the velocity conversion factor information (free format), e.g., Line N+1
specifies the velocity conversion factor at Node N

Entry Variable/Header Type Definition

1 EMC(N) Real Velocity conversion factor at Node N

Last line (A4)

Entry Variable/Header Type Definition

1 ENDR Character Header to signal the end of velocity conversion factor file

ERDC TR-11-10 75

< Sample > 2-D node-based velocity conversion factor.
441 33 NNP, NTSTEP
TS 0.0000000
 1.0000000
 1.0000000
…
TS 0.5000000
 1.0000000
 1.0000000
…
TS 1.0000000
 1.0000000
 1.0000000
…
TS 1.5000000
 1.0000000
 1.0000000
…
TS 2.0000000
 1.0000000
 1.0000000
…
ENDR

When Element-Based Velocity Is Used: a conversion factor is assigned to
each element at each time step.

1st line (free format)

Entry Variable/Header Type Definition

1 NEL Integer No. of global elements

2 NTSTEP Integer No. of time steps at which velocity conversion factor is
given

The following (NEL+1) lines will repeat NTSTEP times: Line 1 is the time stamp, and other NEL lines contain the velocity
conversion factor information for the NEL global elements, from the 1st element to the NELth element

Line 1 (A2, 2X, F20.10)

Entry Variable/Header Type Definition

1 TS Character Time stamp header

2 RTIME Real Time at which velocity conversion factor information is
provided

Each line from Lines 2 through (NEL+1) specifies the velocity conversion factor information (free format), e.g., Line M+1
specifies the velocity conversion factor at Element M

Entry Variable/Header Type Definition

1 EMC(MN) Real Velocity conversion factor at Element M

Last line (A4)

Entry Variable/Header Type Definition

1 ENDR Character Header to signal the end of effective moisture content file

ERDC TR-11-10 76

< Sample > 2-D element-based velocity conversion factor.
800 33 NEL, NTSTEP
TS 0.0000000
 1.0000000
 1.0000000
…
TS 0.5000000
 1.0000000
 1.0000000
…
TS 1.0000000
 1.0000000
 1.0000000
…
TS 1.5000000
 1.0000000
 1.0000000
…
ENDR

Open-boundary file

This file identifies the 2-D or 3-D nodes that are associated with open
boundary, i.e., through which the particle may enter or exit the domain of
interest. The contents of an open-boundary file are listed below.

Lines using OBN as header (A3,1X, free format): open boundary node

Entry Variable/Header Type Definition

1 OBN Character OBN header

2 NPOB Integer Global node ID corresponding to the open-boundary node
being input

Last line (A4)

Entry Variable/Header Type Definition

1 ENDR Character Header to signal the end of geometry file

< Sample > 2-D open-boundary nodes.
OB2 1
…
ENDR

ERDC TR-11-10 77

Appendix C: Output Files of PT123

The output files generated by PT123 are described in this appendix. These
files include:

1. BINARY solution file
2. ASCII solution file
3. BINARY velocity file
4. BINARY velocity conversion factor file

BINARY solution file

The BINARY solution file of PT123 is specified in the super file using the
SBPT header. It can be used for post-processing. For example, a utility
code (pp_pt_pv.f) has been developed to read the BINARY solution file
and create vtk files at specified time steps, such that the tracking result can
be visualized in ParaView (http://www.paraview.org/). The following lists the
Fortran statements used to write particle trajectory information into the
BINARY solution file.

WRITE(LU_OB)NPT,NEQ
DO IPT=1,NPT
 WRITE(LU_OB)NPATH(IPT)
 WRITE(LU_OB)(TPT(K,IPT),K=1,NPATH(IPT))
 WRITE(LU_OB)((XPT(K,I,IPT),K=1,NPATH(IPT)),I=1,3)
ENDDO

where:

 LU_OB = disk unit of the BINARY solution file
 NPT = number of particles
 NEQ = number of dimension (1 for 1-D, 2 for 2-D, 3 for 3-D)
 IPT = id of the particle being considered
NPATH(IPT)= number of particle locations used to describe the trajectory

of the IPT-th particle
 TPT(K,IPT) = time stamp associated with the K-th location of the IPT-th

particle
XPT(K,I,IPT)= the I-th coordinate associated with the K-th location of the

IPT-th particle.

ERDC TR-11-10 78

Arrays NPATH, TPT, and XPT are what we called trajectory arrays in
PT123.

ASCII solution file

The ASCII solution file of PT123 is specified in the super file using the
ABPT header. It can be used for the user to examine the tracking result. It
lists the tracking history (i.e., time and location) of each particle. It also
provides information of the total number of tracking steps.

BINARY velocity file

The BINARY velocity file of PT123 is specified in the super file using the
VNBF, VNBB, VEBF, and VEBB header. The VNBF header is used to
create a BINARY velocity file for node-based forward tracking. Likewise,
VNBB is for node-based backward tracking, VEBF is for element-based
forward tracking, and VEBB is for element-based backward tracking. The
BINARY_PREPARE subroutine (listed below) in PT123 is used to create
these BINARY velocity files. The BINARY velocity files are read by PT123
during the tracking computation when a non-steady velocity field is
considered. They can be used for the next PT computation as long as the
same velocity field is used. They can also be used for post-processing
purposes.

BINARY velocity conversion factor file

The BINARY velocity conversion factor file of PT123 is specified in the
super file using the NEMF, NEMB, EEMF, and EEMB header. The NEMF
header is used to create a BINARY velocity conversion factor file for node-
based forward tracking. Likewise, NEMB is for node-based backward
tracking, EEMF is for element-based forward tracking, and EEMB is for
element-based backward tracking. Like the BINARY velocity files, the
BINARY velocity conversion factor files are created in the subroutine of
BINARY_PREPARE in PT123.

ERDC TR-11-10 79

Subroutine BINARY_PREPARE

SUBROUTINE BINARY_PREPARE
 I (MAXNP,MAXEL,MAXEQ,MAXND,
 I NNP,NEL,NEQ, IBF,IDVE, MNODE,
 I LU_A,LU_F,LU_B, LU_EMCA,LU_EMCF,LU_EMCB,
 M VT1N,VT1E,EMC1N,EMC1E)
C
C 03/16/2011 (HPC)
C ==
C < Purpose >
C Generate the binary file to store velocity and velocity conversion
C factor based on the given ascii files
C < Input >
C IDVE = Indication of data type
C 1 ==> NODE-BASED
C 2 ==> ELEMENT-BASED
C IBF = Indication of tracking type
C 1 = backward
C 2 = forward
C < Working Arrays >
C VT1N = Node-based velocity
C VT1E = Element-based velocity
C EMC1N = Node-based velocity conversion factor
C EMC1E = Element-based velocity conversion factor
C ==
C
 IMPLICIT REAL*8(A-H,O-Z)
C
 CHARACTER IC1*2
C
 DIMENSION VT1N(MAXEQ,MAXNP),VT1E(MAXEQ,MAXND,MAXEL)
 DIMENSION EMC1N(MAXNP),EMC1E(MAXEL)
 DIMENSION MNODE(MAXEL)
C
C
C CASE 1: NODE-BASED
C
 IF(IDVE.EQ.1)THEN
C
 READ(LU_A,*)NNP1,NEQ1,NTSTEP1
 IF(NNP1.NE.NNP .OR. NEQ1.NE.NEQ)THEN
 WRITE(*,*)'ERROR IN READING VELOCITY: (NNP1 .NE. NNP) ',
 > 'OR (NEQ1 .NE. NEQ)'
 WRITE(*,*)'NNP1, NEQ1 =',NNP1, NEQ1
 WRITE(*,*)'NNP, NEQ =',NNP,NEQ
 STOP
 ENDIF
 READ(LU_EMCA,*)NNP2,NTSTEP2
 IF(NNP2.NE.NNP1 .OR. NTSTEP2.NE.NTSTEP1)THEN
 WRITE(*,*)'ERROR IN READING MOISTURE CONTENT: ',
 > '(NNP2 .NE. NNP1) ',
 > 'OR (NTSTEP2 .NE. NTSTEP1)'
 WRITE(*,*)'NNP2, NTSTEP2 =',NNP2, NTSTEP2
 WRITE(*,*)'NNP1, NTSTEP1 =',NNP1, NTSTEP1
 STOP
 ENDIF
C
C === GENERATE BINARY FILES FOR FORWARD PT
C
 WRITE(LU_F)NNP,NEQ
 WRITE(LU_EMCF)NNP
 DO NS=1,NTSTEP1

ERDC TR-11-10 80

 READ(LU_A,1005)IC1,RTIME
 WRITE(LU_F)NS,RTIME
 1005 FORMAT(A2,2X,F20.10)
 READ(LU_EMCA,1005)IC1,RRTIME
 WRITE(LU_EMCF)NS,RTIME
C
 IF(DABS(RTIME-RRTIME).GT.1.0E-10)THEN
 WRITE(*,*)'WARNING!'
 WRITE(*,*)'UNMATCHED TIME STAMPS IN VELOCITY AND ',
 > 'EFFECTIVE MOISTURE CONTENT FILES'
 WRITE(*,*)'CHECK AND CORRECT THE DATA FILES BEFORE RERUN.'
 STOP
 ENDIF
C
 DO NP=1,NNP
 READ(LU_A,*)(VT1N(I,NP),I=1,NEQ)
 READ(LU_EMCA,*)EMC1N(NP)
 ENDDO
 WRITE(LU_F)((VT1N(I,NP),I=1,NEQ),NP=1,NNP)
 WRITE(LU_EMCF)(EMC1N(NP),NP=1,NNP)
 ENDDO
 REWIND(LU_F)
 REWIND(LU_EMCF)
C
C === GENERATE BINARY FILES FOR BACKWARD PT
C < NOTE > THE VELOCITY STORED IN THE BINARY FILE FOR BACKWARD PT
C IS EQUAL TO THE NEGATIVE VALUE OF VELOCITY USED FOR
C FORWARD PT
C
 IF(IBF.EQ.-1)THEN
 READ(LU_F)NNP,NEQ
 WRITE(LU_B)NNP,NEQ
 READ(LU_EMCF)NNP
 WRITE(LU_EMCB)NNP
 DO 150 NS=NTSTEP1,1,-1
 DO NSS=1,NTSTEP1
 READ(LU_F)NNS,RTIME
 READ(LU_F)((VT1N(I,NP),I=1,NEQ),NP=1,NNP)
 READ(LU_EMCF)NNSS,RRTIME
 READ(LU_EMCF)(EMC1N(NP),NP=1,NNP)
C
 IF(NSS.EQ.NS)THEN
 NN=NTSTEP1+1-NS
C
 WRITE(LU_B)NN,RTIME
 WRITE(LU_B)((-VT1N(I,NP),I=1,NEQ),NP=1,NNP)
 REWIND(LU_F)
 READ(LU_F)NNP,NEQ
C
 WRITE(LU_EMCB)NN,RTIME
 WRITE(LU_EMCB)(EMC1N(NP),NP=1,NNP)
 REWIND(LU_EMCF)
 READ(LU_EMCF)NNP
C
 GOTO 150
 ENDIF
 ENDDO
 150 CONTINUE
 ENDIF
 REWIND(LU_F)
 REWIND(LU_B)
 REWIND(LU_EMCF)
 REWIND(LU_EMCB)

ERDC TR-11-10 81

C
C CASE 2: ELEMENT-BASED
C
 ELSE
C
 READ(LU_A,*)NEL1,NEQ1,NTSTEP1
 IF(NEL1.NE.NEL .OR. NEQ1.NE.NEQ)THEN
 WRITE(*,*)'ERROR IN READING VELOCITY: (NEL1 .NE. NEL) ',
 > 'OR (NEQ1 .NE. NEQ)'
 WRITE(*,*)'NEL1, NEQ1 =',NEL1, NEQ1
 WRITE(*,*)'NEL, NEQ =',NEL,NEQ
 STOP
 ENDIF
 READ(LU_EMCA,*)NEL2,NTSTEP2
 IF(NEL2.NE.NEL1 .OR. NTSTEP2.NE.NTSTEP1)THEN
 WRITE(*,*)'ERROR IN READING MOISTURE CONTENT: ',
 > '(NEL2 .NE. NEL1) ',
 > 'OR (NTSTEP2 .NE. NTSTEP1)'
 WRITE(*,*)'NEL2, NTSTEP2 =',NEL2, NTSTEP2
 WRITE(*,*)'NEL1, NTSTEP1 =',NEL1, NTSTEP1
 STOP
 ENDIF
C
C === GENERATE BINARY FILES FOR FORWARD PT
C
 WRITE(LU_F)NEL,NEQ
 WRITE(LU_EMCF)NEL
 DO NS=1,NTSTEP1
 READ(LU_A,1005)IC1,RTIME
 READ(LU_EMCA,1005)IC1,RTIME
 WRITE(LU_F)NS,RTIME
 WRITE(LU_EMCF)NS,RTIME
 DO M=1,NEL
 NNODE=MNODE(M)
 READ(LU_A,*)((VT1E(I,J,M),I=1,NEQ),J=1,NNODE)
 READ(LU_EMCA,*)EMC1E(M)
 ENDDO
 WRITE(LU_F)(MNODE(M),((VT1E(I,J,M),I=1,NEQ),J=1,MNODE(M)),
 > M=1,NEL)
 WRITE(LU_EMCF)(EMC1E(M),M=1,NEL)
 ENDDO
 REWIND(LU_F)
 REWIND(LU_EMCF)
C
C === GENERATE BINARY FILES FOR BACKWARD PT
C < NOTE > THE VELOCITY STORED IN THE BINARY FILE FOR BACKWARD PT
C IS EQUAL TO THE NEGATIVE VALUE OF VELOCITY USED FOR
C FORWARD PT
C
 IF(IBF.EQ.-1)THEN
 READ(LU_F)NEL,NEQ
 WRITE(LU_B)NEL,NEQ
 READ(LU_EMCF)NEL
 WRITE(LU_EMCB)NEL
 DO 250 NS=NTSTEP1,1,-1
 DO NSS=1,NTSTEP1
 READ(LU_F)NNS,RTIME
 READ(LU_F)(MNODE(M),((VT1E(I,J,M),I=1,NEQ),
 > J=1,MNODE(M)),M=1,NEL)
 READ(LU_EMCF)NNS,RTIME
 READ(LU_EMCF)(EMC1E(M),M=1,NEL)
 IF(NSS.EQ.NS)THEN
 NN=NTSTEP1+1-NS

ERDC TR-11-10 82

C
 WRITE(LU_B)NN,RTIME
 WRITE(LU_B)(MNODE(M),((-VT1E(I,J,M),I=1,NEQ),
 > J=1,MNODE(M)),M=1,NEL)
 REWIND(LU_F)
 READ(LU_F)NEL,NEQ
C
 WRITE(LU_EMCB)NN,RTIME
 WRITE(LU_EMCB)(EMC1E(M),M=1,NEL)
 REWIND(LU_EMCF)
 READ(LU_EMCF)NEL
C
 GOTO 250
 ENDIF
 ENDDO
 250 CONTINUE
 ENDIF
 REWIND(LU_F)
 REWIND(LU_B)
 REWIND(LU_EMCF)
 REWIND(LU_EMCB)
C
 ENDIF
C
 999 CONTINUE
 RETURN
 END

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
September 2011

2. REPORT TYPE
Final report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

PT123: A Multi-Dimensional Particle Tracking Computer Program, Version 1.0

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Hwai-Ping Cheng, Matthew W. Farthing, Kevin D. Winters, Stacy E. Howington,
Jing-Ru C. Cheng, and Amanda Hines

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

U.S. Army Engineer Research and Development Center
Coastal and Hydraulics Laboratory and Information Technology Laboratory
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

ERDC TR-11-10

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

U.S. Army Corps of Engineers
Washington, DC 20314-1000

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 This report describes a particle tracking computer program named PT123. The development of PT123 was supported in part by the
Civil Works Basic Research project entitled “Efficient Resolution of Complex Transport Phenomena Using Eulerian-Lagrangian Tech-
niques” and in part by the System-Wide Water Resources Program (SWWRP). Given velocities, PT123 can track massless particles in
1-, 2-, and 3-D unstructured or converted structured meshes. The elements used to construct PT123 meshes are line elements in 1-D,
triangular and/or quadrilateral elements in 2-D, and tetrahedral, triangular prism, and/or hexahedral elements in 3-D. One adaptive
(embedded 4th- and 5th-order) and three non-adaptive (1st-, 2nd-, and 4th-order) Runge-Kutta (RK) methods are included in PT123 to
solve the ordinary differential equations describing the motion of particles. The adaptive RK method allows the user to control tracking
accuracy with specified error tolerances. The non-adaptive RK methods provide the user options to balance computational efficiency
and accuracy by using lower order schemes for smooth velocity fields and higher order schemes for complex velocity fields. Both
element-by-element (EBE) and non-element-by-element (NEBE) tracking approaches are incorporated into PT123. Both node- and
element-based velocity can be used for particle tracking. PT123 can execute forward and backward tracking and output tracking history
at a specified frequency. It tracks particles along the closed boundary and stops tracking when a particle encounters the open boundary

(Continued)

15. SUBJECT TERMS
Adaptive time integration
Element-by-element tracking

Multi-dimensional tracking
Non-element-by-element tracking
Particle tracking

Runge-Kutta methods
Tracking along closed boundaries
Unstructured meshes

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

UNCLASSIFIED

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED 92
19b. TELEPHONE NUMBER (include
area code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

14. ABSTRACT (Concluded)

through which particles enter or exit the computational domain. The start and end times of tracking are flexible as long as
their corresponding velocities can be computed via temporal interpolation using the given velocities. This report is the first
report of the series describing the development and application of PT123. It details the governing equation and numerical
approaching associated with PT123 Version 1.0. Six test examples in multiple dimensions are used for verification and
demonstration. The structure and the input guide of the computer program are given in the appendices.

	Abstract
	Table of Contents
	List of Figures and Tables
	Preface
	1 Introduction
	1.1 Purposes of PT123 research study
	1.2 Modeling approach
	1.3 Computational strategy and features
	1.4 Input and output

	2 Governing Equations and Numerical Solutions
	2.1 Governing equation
	2.2 Time integration
	2.2.1 Adaptive RK schemes
	2.2.2 Error estimate
	2.2.3 Adaption of time step size

	2.3 Interpolation of velocity
	2.4 Element-by-Element (EBE) tracking
	2.5 Non-Element-by-Element (NEBE) tracking
	2.5.1 When using RK1 for NEBE-based PT:
	2.5.2 When using RK2 for NEBE-based PT:
	2.5.3 When using RK4 for NEBE-based PT:
	2.5.4 When using RK45 for NEBE-based PT:

	2.6 Tracking along a closed boundary
	2.6.1 Velocity projection onto a 2-D boundary edge
	2.6.2 Velocity projection onto a 3-D boundary face

	3 Test Examples
	3.1 Example 1: 1-D steady non-uniform velocity field
	3.2 Example 2: 2-D steady rotational velocity
	3.3 Example 3: 2-D swirl velocity
	3.4 Example 4: 3-D helical velocity
	3.5 Example 5: Seabrook flow field
	3.6 Example 6: Umatilla groundwater flow field

	4 Summary
	References
	Appendix A: Program Structure of PT123
	Appendix B: Input Guide of PT123
	Appendix C: Output Files of PT123
	Report Documentation Page

